Joint EURL pesticides meeting October 23rd-25th, 2013 Almeria Spain

The Food and Environment Research Agency

LC-HRMS: Challenges for Routine Implementation

Richard J. Fussell

www.fera.defra.gov.uk

Presentation Outline

- The drivers for qualitative screening methods
- Key requirements
- Challenges for routine implementation

The need for HRMS screening

The Food and Environment Research Agency

 Targeted pesticide analysis such as LC-MS/MS will answer the question;

"Which pesticides from a predefined list are present in the sample at, or above, a specified concentration?"

• Only detects pesticides in the 'predefined list'

• Other residues present will not be detected

- essentially false negatives

Stakeholders

- Consumers
 - concerns regarding residues

Regulators

- residues do not affect consumer health
- residues do not exceed MRL
- seen to be proactive regarding unexpected residues

increase scope of methods (more analytes)

- increase speed of methods (more samples) retrospective
- search capability

Can non-targeted analysis help meet these goals?

Key requirements of qualitative MS screening methods

View from other laboratories

- December 2012 EURL training on screening
- Invited participants (good record in screening PT)
- Laboratories adopt different approaches to screening PTs
- Screening PT (relatively high concentrations)
 Common issues resolving power, selectivity, sensitivity, data processing

LC Separation

System	Acquity UPLC [™] I-Class
Column	BEH C18 100 mm x 2.1 mm, 1.7 μm
Column temp.	45 °C
Flow	0.45 mL/min
Injection vol.	6 µL
Mobile phase	(A) 0.01M Amm. acetate aq.
	(B) 0.01M Amm. Acetate in MeOH
Gradient	17 min

Data Acquistion

- MS^E scan (low CE): 4 V
- MS^E scan (ramp CE): 10-45 V

The Food and Environment Research Agency

Detection : Xevo G2-S QToF™

Ionization Mode	ESI + (1.0 kV)				
Cone voltage	25V				
Desolvation Temperature	550 °C				
Reference Mass	Leucine enkephalin [M+H]+ =556.2766				
Acquisition Range	50-1200 m/z				
Acquisition Rate	8 spectra/second				
Mass resolution (FWHM)	19000 at <i>m/z</i> 142.0087 26500 at <i>m/z</i> 284.1417 30000 at <i>m/z</i> 413.1284 41000 at <i>m/z</i> 732.4695				

The chromatography compromise

The Food and Environment Research Agency

25:75% MeCN:water, 6 µL injection volume

Component evaluation

Waters UNIFI - ASMS Pest QuanQual: Analysis C	ienter					Course & Ideas	
My Work	S Welcome to	UNIFI	ASMS Pest QuanQual: An ×	ASMS Pest Master: An	aly	Search folders	
Review Investigate Report							
🏫 🔄 Review Results 👻					🖉 Limits 🔻	🖻 Process 🔻 🎧 Edit 👻 🌼	Tools 🔻 强 🛛 💆 File 🛸
Workflow •	4	🔋 Unknown in Red	Pepper 2 Sample position: 1	:40 Replicate: 1 Dicrotor	phos The sample set is not four	d, modifications will only be saved	I to the analysis
Workflow	7.	Component Summa	ry •		View: *F an	d E Qual View 1) * # 3 -0
Summary		Component name	1 🔺 🔤 Expected RT (min) 🛛 Ob	served RT (min) Mass error	(ppm) Expected Fragments Count	Identified High Energy Fragments	Adducts Isotop
 Batch Overview 		1 Atrazine	7.53	7.46	-1.42	2	2 +H
Result Summary		2 Azoxystrobin	8.47	8.44	-1.49	3	1 +H, +Na, +K
IDs with no flags - summany		3 Chlortoluron	7.26	7.23	0.61	0	0 +H, +Na, +K
IDs with no flags - details		4 Dicrotophos	4.11	4.21	0.41	3	3 + H, +Na, +K
O IDs with no flags - quan		5 Diuron	7./1	7.04	0.05		1 +n, +Na
IDs with flags - summary		5 Fenpropimorph	11.52	11.63	1.09	1	1 +H
Excluded targets	-	7 Hexazinone	6.63	6.60	1.80	2	2 +H, +Na, +K
	× -	B Metolachior	9.33	9.28	-2.16	2	2 +H, +Na, +K
			3.04	~~	***		• ••
		Chromatograms	R % 🗃 🔊 🗸 4	Spectra •			
		la seconda de la la seconda de	n Red Demos 2		In a Red Dennes 2		
		Channel name: Integra	ted : Smoothed : Mass Chrom	E Description: U	nknown in Red Pepper 2		
		Dicrot	ophos	1	23 <mark>1.0</mark> 339	8	
		· 50000-		\$ 5e+05-		200 12000	
				, ICo		296.13005	
		[this		-fr 2.5e+05-	193.02560		
				Pt :	112.0/555	297.13935 / 387.14193 467	7.16853 545.17181
			5 10 15		100 200	300 400	500
Administrator, UNIFI [Administrator]		N. N. N.					<u>k</u> 🔊 🕅

Database

Maintenance up to date

In this example: Waters pesticide database

- 520 entries
- Available information:
- Name
- Chemical formula
- ✤ Structure
- Retention time
- Accurate mass
- Fragment ion(s)
- ✤ Isotopic patterns
- ✤ Isotope intensity

Qualitative screening: validation

The Food and Environment Research Agency

Document N° SANCO/12495/2011

Supersedes Document No. SANCO/10684/2009

Implemented by 01/01/2012

- Based on detectability (< 5% false negatives)
- Analysis of at least 20 samples spiked at SDL
- Multiple matrices from commodity groups:
 2 different samples for each matrix & representative of the scope of the laboratory
 - Analysis of non-spiked samples to determine number of 'False detects'

Validation in practice

- 11 different matrices
- DisQuE[™] QuEChERS (citrate buffered version)
- Samples spiked with pesticides at 0.01-0.05 mg/kg

Data Processing Software

- Complex data sets
- Adducts, fragments and isotopes
- Automated peak detection, integration
- Balance between False detects and False
 negatives
- Ease and speed of review of dataAutomated reporting
- Storage and retrieval of data

UNIFI automated data processing Parameters evaluation

The Food and Environment Research Agency

Grape 50 ppb

Balance between false negatives and False detects

		Detection rate (%)	False detects rate (%)	Detection rate (%)	False detects rate (%)
	\pm 10 ppm, \pm 0.5 min, > 100 counts	88	15	94	6
	\pm 5 ppm, \pm 0.5 min, > 100 counts	86	12	94	5
	\pm 5 ppm, \pm 0.2 min, > 100 counts	85	9	94	4
	\pm 5 ppm, \pm 0.2 min, > 100 counts, isotope m/z match (10 ppm)	79	6	93	4
any.	\pm 5 ppm, \pm 0.2 min, > 100 counts, fragment(s)	69	1	83	0,4
	\pm 5 ppm, \pm 0.2 min, > 100 counts, isotope m/z match (10 ppm), fragment(s)	65	0,8	83	0,4

Orange 50 ppb

Ease & speed of data review and report outputs

Automated detection (%)

fera //

Samples spiked with pesticides at 0.01 mg/kg

The Food and Environment Research Agency

Settings: \pm 10 ppm, \pm 0.5 min, detector counts threshold 100

Screening Detection Limits

Research Agency

- Two different samples for each matrix
- Analysis (ESI (+) mode) on 2 different days (>2 months apart)

Apple, grape, tomato,	Screening			
pepper, nectarine, pear,	Detection Limits			
orange, melon, broccoli	0.01	0.05		
celery and leek	mg/kg	mg/kg		
Number of compounds detected in ≥ 95% of the samples	130	150		
% of pesticides detected in ≥ 95% of the samples	71	81		

Based on 186 compounds included in the Waters database

Settings: \pm 10 ppm, \pm 0.5 min, detector counts threshold 100

Evaluation of data processing parameters (EUPT test materials)

Research Agency

Mandarin FV-SM-03

Retention time window (± min)	Fragments observed?	Mass error (±ppm)	Number of targets	Number in DB	Total detects	Detects	% target detected (DB)	Total FD	%FD	
0,5	No	10			67	18	82	49	9	
0,5	No	5			50	18	82	31	6	
0,5	No	3	27	22	43	18	82	23	4	
0,5	No				18	9	41	9	2	
0,2	No	5			40	V 18	82	22	(4)	
0,5	Yes	5			20	18	82	2	0,4	

Leek FV-SM-02

Retention time window (± min)	Fragments observed?	Mass error (±ppm)	Number of targets	Number in DB	Total detects	Detects	% target detected (DB)	Total FD	%FD	
0,5	No	10			76	21	100	55	(11)	· 📘
0,5	No	5			47	21	100	21	(4)	
0,5	No	3	22	21	37	21	100	15	3	
0,5	No	1		21	13	7	33	5	1	
0.2	No	5			35	19	90	15	3	
0,5	Yes	5			22	20	95	4	0,4	↓

DB: database, FD: false detects

EUPT results automated data processing

Mass error range \pm 5 ppm \pm 0.5 min >100 counts isotope match (10 ppm) fragments (y/n) ESI +

	Sample ID	Leek SM-02	Mandarin SM-03	Pear SM-04
	No. of targets	22	27	21
	No. of targets in database	21	22	18
	No. of target pesticides detected	20	18	15
	No. of FDs	2	2	3
	Max RT diff (min) across all pesticides	0.4	0.1	0.1
	Mass error range (ppm)	0.1 – 2.9	0.0 – 2.6	0.0 - 2.6
	Detection rate (%) (No. of pesticides in DB)	95	82	83

False detection rate (%)

The Food and Environment Research Agency

False detection rate calculated in blank samples against 479 compounds in batch 1 and versus 519 in batch 2

System Maintenance

- Batch to batch control of retention time (library maintenance)
- Cleanliness of system (adduct formation)
- Batch to batch control of sensitivity

QuEChERS -ToFMS: batch to batch variability

The Food and Environment Research Agency

samples spiked with 197 pesticides at 0.01 mg/kg

Batch Nº	1	2	3	4	5
matrix	grape	grape	pear	pear	lettuce
% of pesticides detected	85	96	85	88	94
'B	lank sa	amples	;		
Total Nº of peaks detected	26	33	37	27	57
Nº of peaks (noise removed)	19	25	30	18	39

On-going Analytical Quality Control

- Detects at low concentration for compounds with high response
- Detector saturation at high analyte concentrations although in these cases quantification can be made using isotope ions
- Representative analytes
- Which standards should be included in the representative mix?
 - Minimum requirements (MACCP)

MACCP

Research Agency

The Food and Environment

- Method Analysis Critical Control Points
- The requirement is to identify all critical points in the method (typically ~10) and link 1 analyte to each critical control point. A QC spike containing the selected analytes is included with each batch.
- When all 10 analytes are detected, it is assumed that all critical points are in control, the method performance is acceptable and the batch can be approved

Proposal by Hans Mol

Use of Fragments

- Relative value of fragments without precursor ion selection
- *When analysing pesticides at 100 ppb with a high cone voltage, 57 of the 83 compounds only gave M+H (no fragments)*

All ions or MS^e do not always produce detectable fragments

*Information from Amadeo Fernandes Alba

Future developments : ion mobility

- Another dimension of separation (size and shape of the molecule)
- Drift time Independent of matrix
- Selectivity needs to be proven
- Can CCS value be used as an Identification point?

Observed MSE spectra for spinosad in Mandarin extract

Authors:

Michael McCullagh¹, Severine Goscinny², Vincent Hanot², David Douce¹, Dominic Roberts¹, Sara Stead¹ and Ramesh Rao¹

¹Waters, Floats Road, Manchester, United Kingdom

²Wetenschappelijk Instituut Volksgezondheid Institut Scientifique de Santé Publique, Rue Juliette Wytsmanstraat 14 | 1050 Brussels

Mobility resolved MSE spectra for spinosad **fera**

The Food and Environment

Authors:

Michael McCullagh¹, Severine Goscinny², Vincent Hanot², David Douce¹, Dominic Roberts¹, Sara Stead¹ and Ramesh Rao¹

¹Waters, Floats Road, Manchester, United Kingdom

²Wetenschappelijk Instituut Volksgezondheid Institut Scientifique de Santé Publique, Rue Juliette Wytsmanstraat 14 | 1050 Brussels

Future Development- Micro flow LC

Prototype Microfluidic device UPLC **Research Agency** Item name: UPLC WIV-ISP ACN 021 Item name: T150 PSS ACN 290 Channel name: Mass Chromatogram (16.7 PPM) :+297.0556 : 1: TOF MSe (50-1200) 4eV ESI+ Channel name: Mass Chromatogram (16.7 PPM) :+297.0561 : 1: TOF MSe (50-1200) 4eV ESI-5.28 S-N: 616.13 Noise 11.24-1 S-N: 2192.69 2.5e5 40000 2e5 30000 1.5e5 by [Co ≥ 20000 Imazalil10pg/µL 붙 100000-10000 50000 2.19 2.57 2.28 4.38 1 95 1 ... 12 14 10 2.5 7.5 10 12.5 15 17.5 20 Retention time [min] Retention time [min] S/N RESPONSE Amount on Column **Calculated Gain** Prototype 2163 2.5e⁵ 20pg S/N 8.8 **Microfluidic Device** Response 15 **UPLC** 4.2e⁴ 616 50pg

Authors: Michael McCullagh¹, Severine Goscinny², Vincent Hanot², David Douce¹, Dominic Roberts¹, Sara Stead¹ and Ramesh Rao¹

¹Waters, Floats Road, Manchester, United Kingdom

²Wetenschappelijk Instituut Volksgezondheid Institut Scientifique de Santé Publique, Rue Juliette Wytsmanstraat 14 | 1050 Brussels

Authors:

Michael McCullagh¹, Severine Goscinny², Vincent Hanot², David Douce¹, Dominic Roberts¹, Sara Stead¹ and Ramesh Rao¹ ¹Waters, Floats Road, Manchester, United Kingdom

²Wetenschappelijk Instituut Volksgezondheid Institut Scientifique de Santé Publique, Rue Juliette Wytsmanstraat 14 | 1050 Brussels

Summary

- Substantial developments to hardware and software, but further improvements still required.
- In the interim period then it is likely that non-targeted screening approaches will be use in parallel with targeted methods.
- In the future, detection, identification, quantification and non targeted analysis will be combined into a single analysis.

Acknowledgements

Research Agency

Sara Stead, Mike McCullagh and Dominic Roberts:

Waters Corporation, Manchester, UK

Monica Garcia-Lopez acknowledges the Spanish Ministry of Education,

Culture and Sport for her postdoctoral contract

Further information on qualitative screening: H G J Mol et al, Drug Testing and Analysis 2012, 4 (Suppl. 1), 10-16

Hans Mol, Non target is our Target, The Analytical Scientist #5, May 2013.