

News on EURL DataPool Service

Outline

- Accurate Mass Data DB
- PestiPedia
- Analytical Capabilities on Pesticides (WD SANCO/12745/2013 rev. 9(1))
- Update of official sample scope

- CS2 Data Collection Project
- Outlier-Test in Method Validation DB

EUPT Archive

Lab Network

Analytical Methods

EURL DataPool Service

Compound Stability

Method Validation Data

Accurate Mass Data

NEW!

Compounds

Commodities

MRL Residue **Definitions**

EUPT Archive

Lab Network

Analytical Methods

Method Validation
Data

EURL DataPool Service

heavily relying on contributions by experts from network!

Compound Stability

NEW!

Accurate Mass Data

Compounds

Commodities

MRL Residue
Definitions

Tools offered

Lab Networking Surveys Search Tool for Accurate Mass Data

PestiPedia

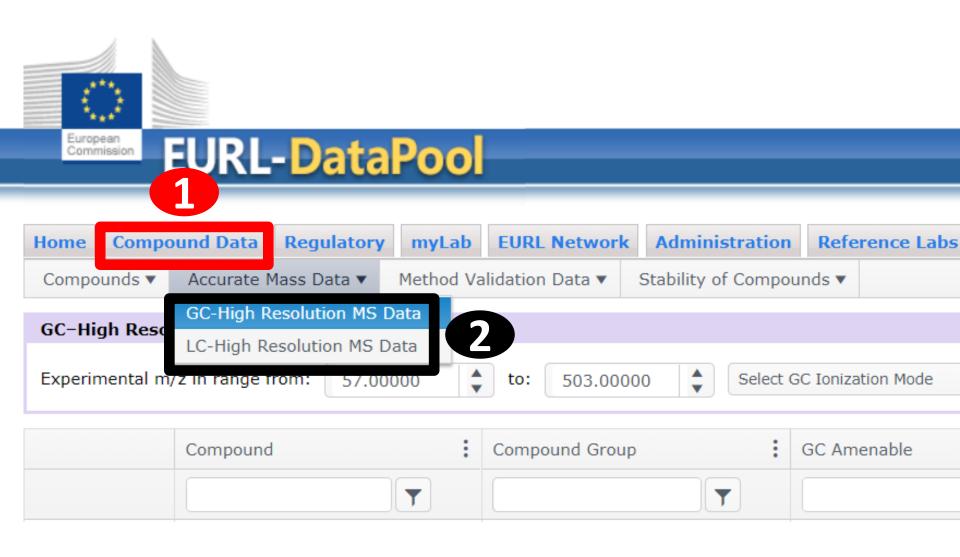
Check myScope

MU Estimation
(based on PT-results & validation data)

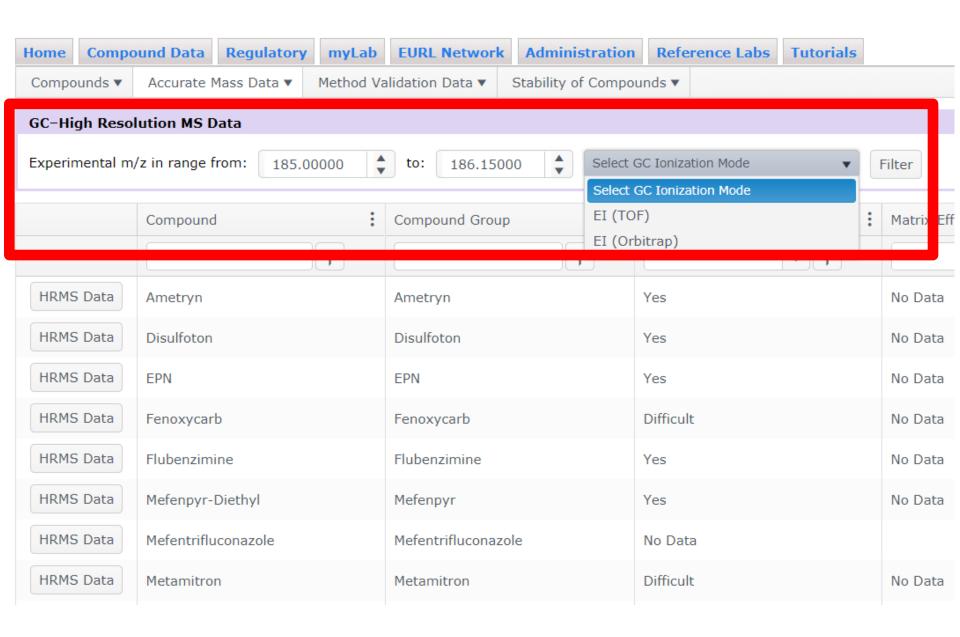
EUPT Registration

Calculation of MRL Residue Definition's Sum

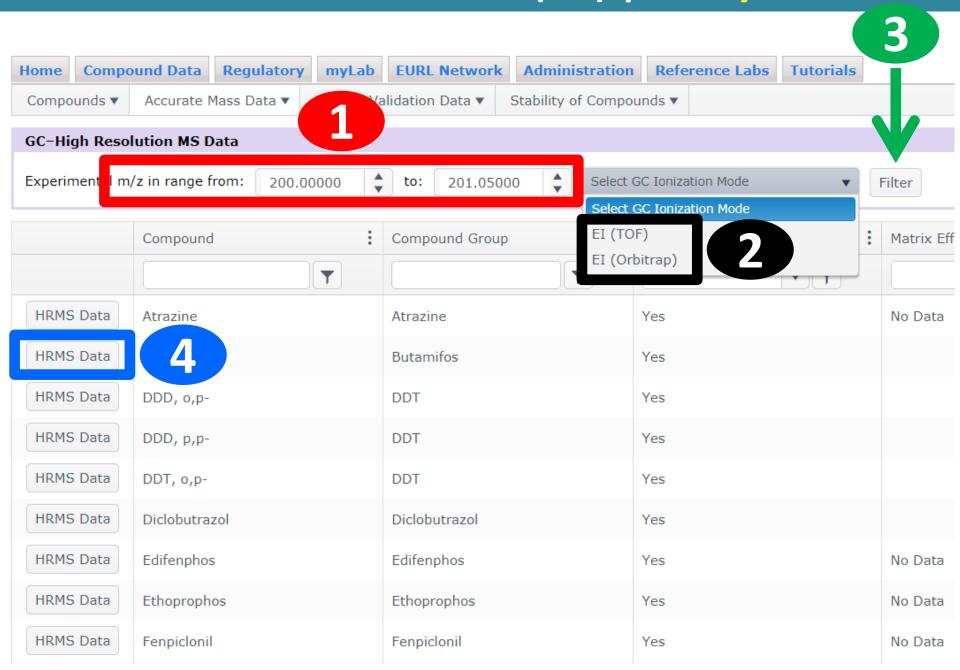
EURL DataPool | Login required

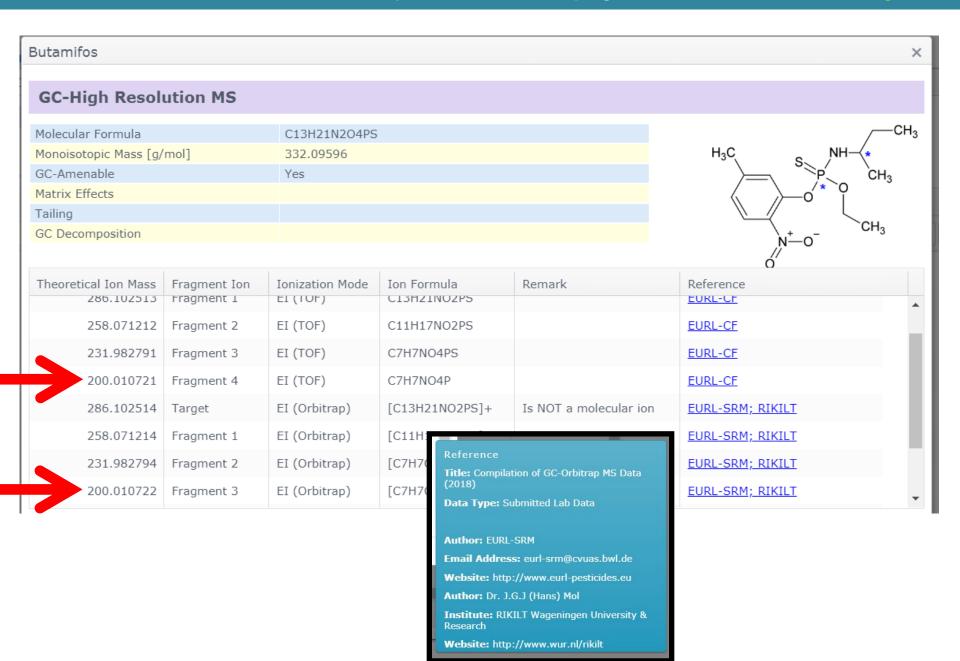

The EURL DataPool website currently offers the following databases/views allowing systematic collection and online retrieval of pesticide-related data:

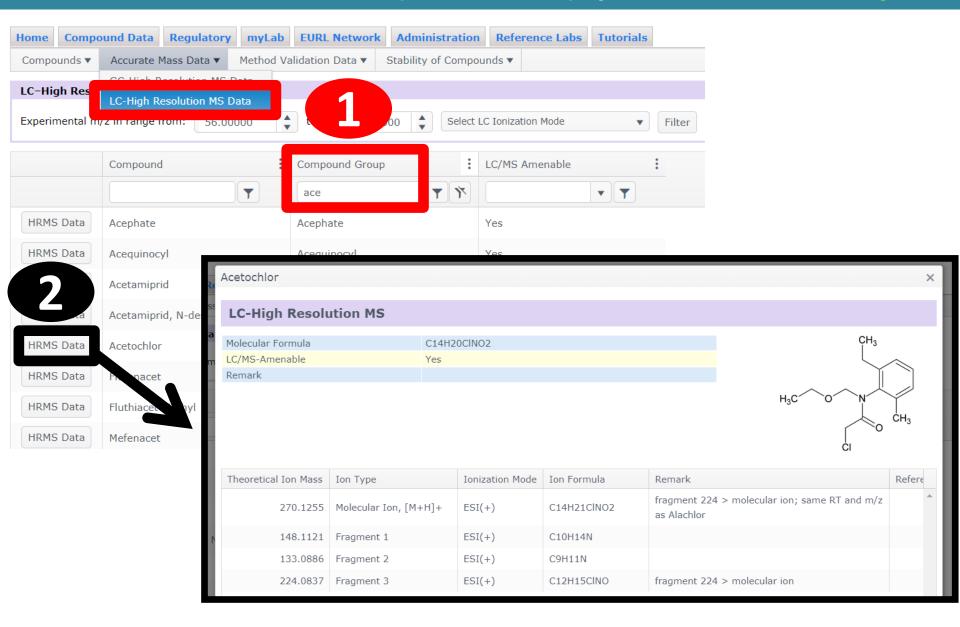
- · Pesticide Compound DB
- · Method Validation DB
- Lab Network DB (only accessible to members of the official EU-lab network)
- . MRL Residue Definitions (issued by EU and Codex Alimentarius)
- · Stability of Compounds in Solution
- · List of Physicochemical Data
- . My EUPT Results (EUPT data extracted from the EUPT Archive DB)
- Online-Tool for Estimation of Measurement Uncertainty based EUPT-results and method validation data (only accessible to NRL members)


Call for data submission: Numerous validation/pesticide stability experiments are being performed by various laboratories around the world. Nevertheless, there has traditionally been a lack of coordination in bringing this data together to allow overall data processing and assessment. This project aims to close this gap. We thus greatly welcome and encourage any contributions.

- If you would like to submit your method validation results, please take a look under Submission of Method Validation Results.
- . If you would like to submit your results of pesticide stability experiments, please download our template for data submission: Submission of Compound Stability Data.


Accurate Mass DB | Search Tool


Accurate Mass DB (GC) | Query


Accurate Mass DB (GC) | Query

Accurate Mass DB (GC-HRMS) | Result of Query

Accurate Mass DB (LC-HRMS) | Result of Query

(Cooperation with Swedish NRL (National Food Agency, Sweden) is ongoing.)

Take Home Message

Online-Search for HR-MS data is available.
Submission of HR-MS data is highly welcome!

PestiPedia | Tool to Compile Pesticide Expert Knowledge

Welcome to PestiPedia!

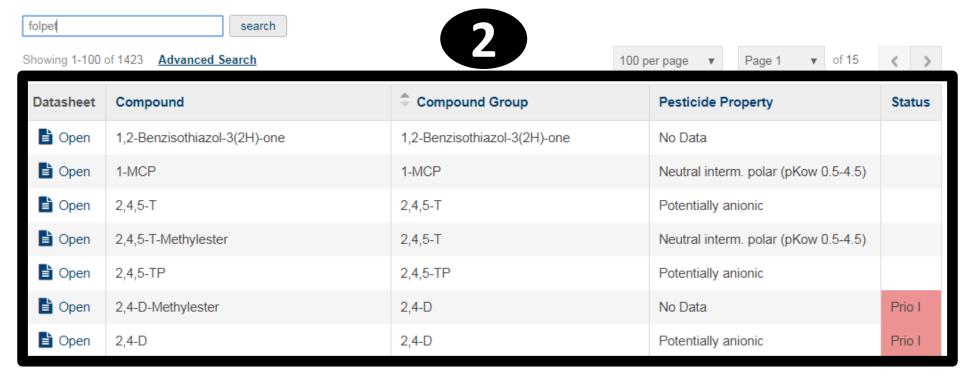
PestiPedia was designed to make

ppilation of data relevant to pesticide residue analysts straightforward.

Find below information and

ongoning projects:

- Cooperation with WG on Pesticides of the German Chemical Society ("AG Pestizide")
- pesticide-residue-experts can make contributions to aspects that are relevant in pesticide residue analysis.
- individual contributions will be discussed by registered experts and the outcome will be imported into the EURL DataPool


PestiPedia | Tool to Compile Pesticide Expert Knowledge

List of Compounds

To search for a specific compound, click on the "Advanced Search"-feature (see below), choose the column that should be searched through, add the filter text and click on the "Add" button.

Click on the link "Open" in the column "Datasheet" in order to make your contributions to this compound.

PestiPedia | Tool to Compile Pesticide Expert Knowledge

PestiPedia

Home Observations on Properties of Pesticides ▼

Compilation of CS2 Data 🔻

Additional Info *

List of Compounds → Compound Details

3-Hydroxycarbofuran

3-Hydroxycarbofuran

Choose one of the buttons below to make your contribution to a specific topic:

Stability of Pure/Neat Standards Stability of Standard Solutions Stability in Matrix-Extracts LC-MS Behaviour GC Behaviour

Losses during Extraction/Cleanup Practical/Legal Aspects

PestiPedia | Contributions to Specific Topics

Stability of Pure/Neat Standards

Stability of Standard Solutions

Stability in Matrix-Extracts

LC-MS Behaviour

1 /iou

3-Hydroxycarbofuran

More Details from DataPool

3-Hydroxycarbofuran

Existing Da

LC-MS Ame Remark

To add NEW or ADDITIONAL data sets on LC-MS Behaviour, click on the buttons below:

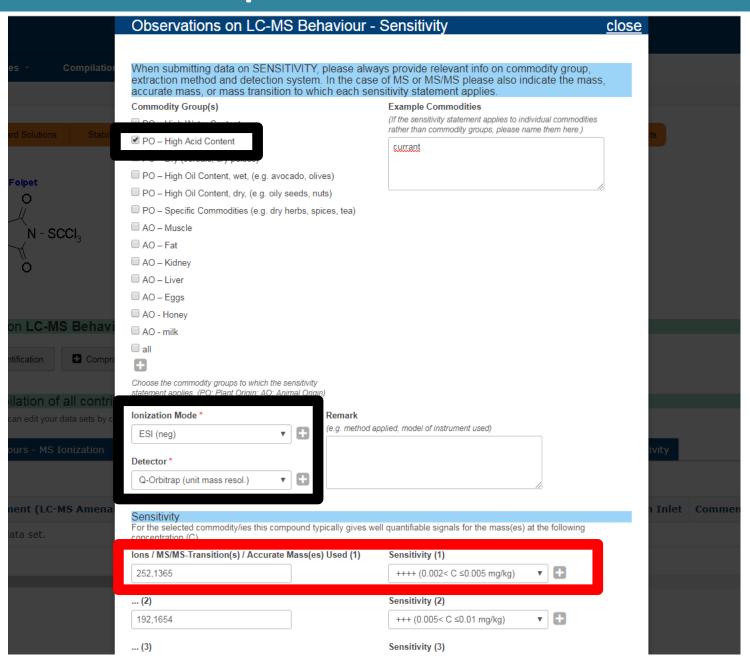
General Info

Tab

- Ionization, Fragmentation & Identification
- ♣ Compromized Identification and Interferences
- Sensitivity

To see Your Contribution(s) or the Compilation of all contributions colle

UR contributions show the prefix "Yours". You


Open here the form to make comments on e.g. "Sensitivy".

2

contributions ha

S Behavior

PestiPedia | Form to Enter Observations

PestiPedia | Contributions to Specific Topics

LC-MS Behaviour Stability of Pure/Neat Standards Stability of Standard Solutions Stability in Matrix-Extracts Losses during Extraction/Cleanup Practical/Legal Aspects 3-Hydroxycarbofuran 3-Hydroxycarbofuran Existing Data from EURL DataPool: More Details from DataPool LC-MS Amenable Yes Remark To add NEW or ADDITIONAL data sets on LC-MS Behaviour, click on the buttons below: General Info Sensitivity Ionization, Fragmentation & Identification Compromized Identification and Interferences To see Your Contribution(s) or the Compilation of all contributions collected so far on "LC-MS Behaviour", click on the TABS below: Tabs with YOUR contributions show the prefix "Yours". You can edit your data sets by clicking on "Edit". Tabs with the compilation of ALL contributions have the prefix "All" Yours - General Info ALL - General Info ALL - MS Ionization ALL - Interferences Yours - Sensitivity Yours - MS Ionization urs - Interferences ALL - Sensitivity ALL - Sensitivity Advanced Search export User Compound **Ionization Mode** Remark Ions / MS/MS-Transition(s) / Accurate Mass(es) Used (1) Sens. (1) Ions/... (2) Detector Norbert ESI (neg) Triple Quad. bad Hydroxycarbofuran reproducability of Peak area

260,08933

+++

(0.005 <

 $C \le 0.01$ mg/kg)

in ESI (neg) mode

ξ64 L00.00

Q-Exactive

115/1

(Q-)Orbitrap

(High

Resol.)

ESI (pos)

Hydroxycarbofuran

Sabine

PestiPedia | Practical/Legal Aspects

To add NEW or ADDITIONAL data sets on Practical/Legal Aspects, click on the button below:

■ Add New Data on Practical/Legal Aspects

To see Your Contribution(s) or the Compilation of all contributions collected so far on "Practical/Legal Aspects", click on the TABS below:

Tabs with YOUR contributions show the prefix "Yours". You can edit your data sets by clicking on "Edit". Tabs with the compilation of ALL contributions have the prefix "All"

Yours - Practical/Legal Aspects

ALL - Practical/Legal Aspects

ALL - Practical/Legal Aspects

2

User	Compound	Name Relevant Commodities for this Compound	Compound Originates from Other Sources	Remark (Other)	Compound or Degradation Products thereof may Originate from a
Anna	Folpet	hops, wine	Generated from the degradation of other pesticides, From a non-pesticide related contamination, As a natural product in food, Formed during food processing, Formed as an artefact in GC inlet, Formed as an artefact during Extraction, Formed as an artefact during Cleanup	under "Compound Originates from Other Sources" phthalimide, the metabolite of folpet is meaning:	drifts of phthalic acid from fruit plantations (Captan, Folpet applications) at the prevalent presents of phthalic acid during drying is possible
Andreas	Folpet	processed dried food product			
Günter	Folpet	Herbs and spices, tea, fruit and herbal teas, processed (dried) food products		Phthalimid (PI) as the major metabolite might derive from environmental impact (Phthalic anhydrid or Phthalic acid) and might be formed during processing of food products and during injection process in GC.	

You are here: Home: Single Residue Methods

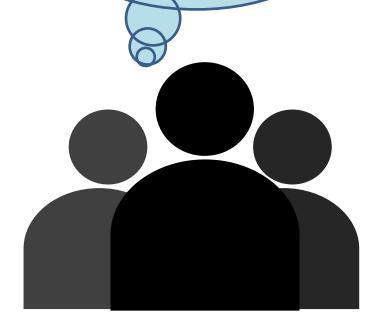
FURL Portal **FURL for**

FURL for Fruits and Vegetables | Cereals and Feeding Stuff | Food of Animal Origin

FURL for

FURL for Single Residue Methods

Topics PestiPedia EURL-SRM Network NRL-SRM Network Metabolite AMTT by QuEChERS Method using LC-MS/MS Proficiency Tests **EUPT-SRM Overview** EUPT-SRM12 (Straw Interested? EUPT-SRM11 (Spina Login EUPT-SRM10 (Corn) Enter your email address and password to login. Please contact: Workshops Workshop Overview **Email Address** Joint Workshop 201 eurl-srm@cvuas.bwl.de Workshop AO/S Servi tribution Se **ILISs** urScope-Se Checl n Fish Password (forgot?) SRM-Board Servi ts Metabolites in Fish Using the thod List o ethods List o oservations the EPRW 2016 ds Down SRM at the EPRW 2016 are online Remember me Inter **EURL** taPool Observations and Method Report Sign In **EURL** taPool (Tes an Analytical Observations Report and a Method Protocol QuEC RS - Websit


Analysis of Residues of Carbofuran - Analytical Observations and Method Report

Analysis of Carhofuran by QuEChERS methodology, an Analytical Observations Depart and a Method Protocol

PestiPedia

Take Home Message

PestiPedia = website to share experiences/observations/... with other pesticide experts. Give/Take-Concept!

Collection of CS₂-Findings non-Originating from DTC-Pesticides

- Re-evaluation of dithiocarbamate-MRLs is planned for 2019
- DTCs are usually analyzed by using common moiety methods involving the release of carbon disulfide (CS₂) via an acid digestion/hydrolysis step (using a mixture of tin(II)-chloride and hydrochloric acid)
- Some crops **naturally contain compounds** (e.g. mustard oil glycosides) **that do release CS₂** (either spontaneously or) during the digestion/hydrolysis step of DTC analysis (=> background CS₂-levels):
 - crops belonging to *Brassicaceae* + *Alliaceae* family
 - Papaya

CS₂-Background Levels | Some Results

		MRL (CS ₂)	CS ₂ Findings by the EURL-SRM [mg/kg]			
Common Name	Genus	[mg/kg]	n	Homogenized and analyzed frozen	Homogenized at room temp. and analyzed after	
					15 min	2 h
Arugula (rocket/rucola)	Eruca	5	3	0,37±0,06 - 0,82±0,08	2,6±0,07 - 8,33±0,3	2,2±0,2 - 7,24±0,9
Caper	Capparis	25				
Caper Berries (canned)			1		1,40	
Brine of Caper Berries (canned)			1		0,35	
Capers (edible flower buds; canned)			1		5,24	
Brine of Capers ()			1		0,20	
Cabbage	Brassica	Head cabbages: 3	1	0,18±0,004	0,23±0,02	0,20±0,05
Cauliflower	Brassica	1	1	0,08±0,01	0,12±0,02	0,07±0,01
Champignon mushroom	Agaricus	0.05*	1	≤0,01	≤0,01	≤0,01
Chinese cabbage, napa cabbage	Brassica	Chinese cabbages/pe-tsai: 0,5	1	0,08±0,01	0,15±0,04	0,11±0,02
Collard greens	Brassica	Kales: 0,5				
Garden cress	Lepidium	Cresses and other sprouts and shoots: 5,0	1	(≈1,1)	(≈5,9)	(≈3,6)
Moringa	Moringa	0.1*Processing Factor 0.1 (from 2018 onwards)	7		0,70±0,08 – 11,2±0,09	

CS - Rackground Levels | Some Results

C32-Dackground Levels Some Results					
			CS ₂ Findings by the EURL-SRM		
		MRL (CS ₂)	[mg/kg]		
Common Name	Genus	[mg/kg]	Homogenized Homogenized at room temp.		

seeds: 0,1*

seeds: 0,1*

seeds: 0,1*

seeds: 0,1*

2

2

1

1

1

1

=> Need to collect data on non-pesticide related CS2 levels

and analyzed frozen

0,17±0,02

0,04±0,01

0,012

0,38±0,03

0,09±0,02

0,24±0,03

0,15±0,01

1

1

1

1

1

1

1

2

1

1

and analyzed after ...

2 h

1.1±0.03

0,22±0,07

 0.05 ± 0.03

 0.7 ± 0.1

0,055±0,006

0,25±0,03

 $0,09\pm0,01$

15 min

0,93

30

263

1,22±0,05

0,22±0,09

 0.09 ± 0.1

0,59±0,04

0,055±0,003

0,24±0,01

0,07±0,006

	MRL (CS ₂)	
Genus	[mg/kg]	

Brassica

Brassica

Brassica

Brassica

Raphanus

Brassica

Brassica

Allium

Allium

Allium

Mustard

Black mustard seeds

Table Mustard (hot)

Radish (black)

Radish (white)

Turnip cabbage

May turnip

Onions

Shallots

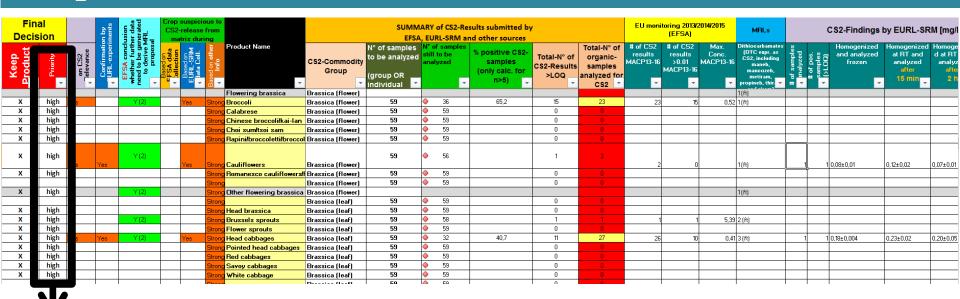

Welsh onions

Table Mustard (medium-strength)

Spring onions/green onions and

of ORGANIC products

CS₂-Background Levels | Priority List (by EFSA & EURL-SRM)

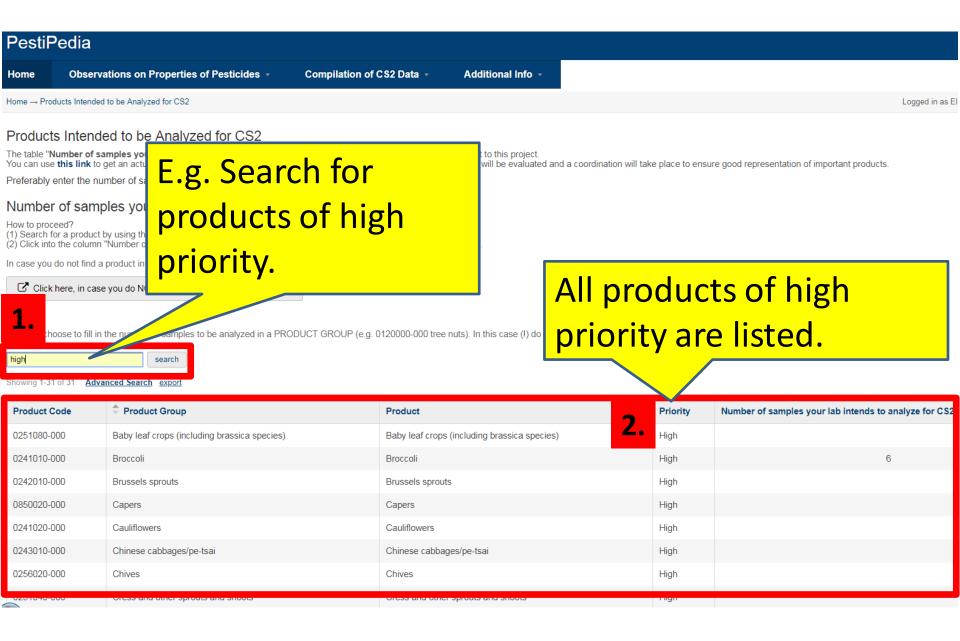


Priority	# of crops	Exemplary crops		
High	91	Radish, turnips, broccoli, cauliflower, caper, papaya, guava		
Medium	46	Figs, sweet potatoes, pomegranate, mango, maracuja, chamomile, ginger		
Low	186	Almonds, berries & small fruits, avocado, lentil		

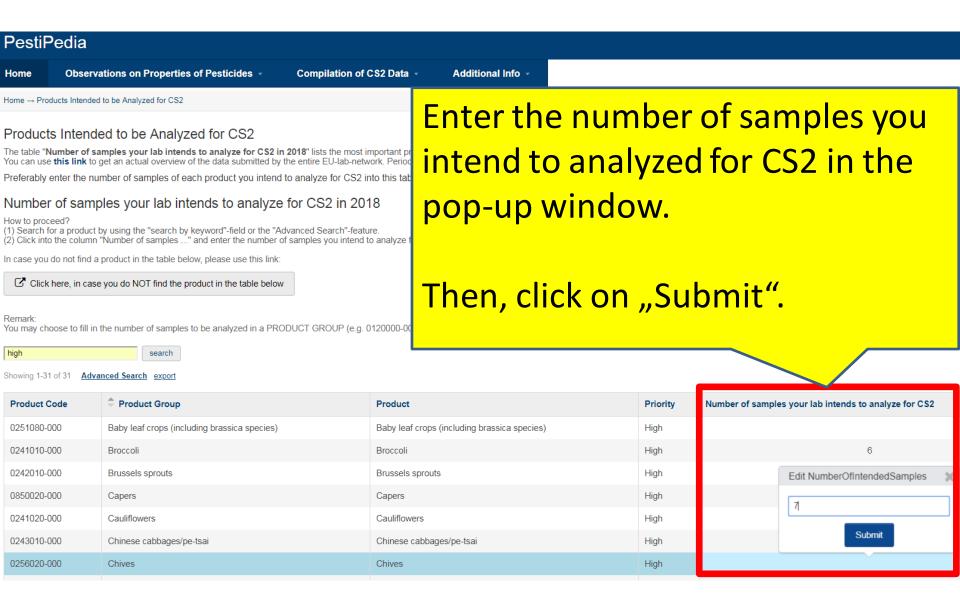
>5300 organically grown crops have theoretically to be analyzed to quantify CS₂-background levels (*)

(*) For relevant commodities data from 59 samples is needed

CS₂-Background Levels | Coordination Required!



In 2017, the EURL-SRM and EFSA jointly elaborated a list of crops suspicious to release CS2 during analysis. This list was distribut regional control programs.


You can enter the number of samples you intend to analyze for CS2 by using the following link:

Number of Samples Intended to be Analyzed for CS2

CS₂-Background Levels | Coordination via PestiPedia

CS₂-Background Levels | Coordination via PestiPedia

Background CS2-Levels | Results

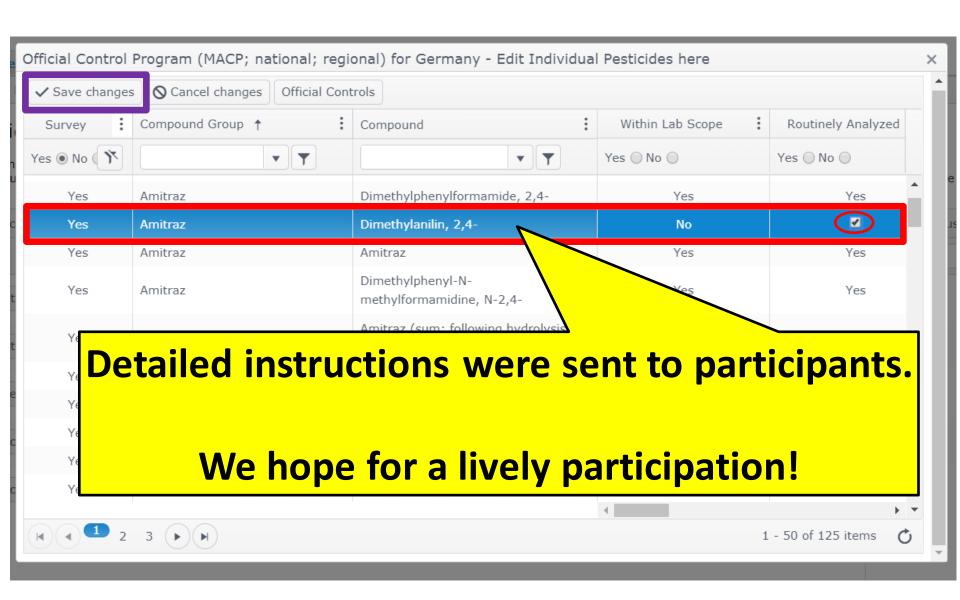
N° of	N° of different crops	N° of samples intended to be analyzed per crop-priority				
participating labs	intended to be analyzed by Member State	High	Medium	Low		
11	34	194	16	39		

Could be shifted to crops of higher priority!

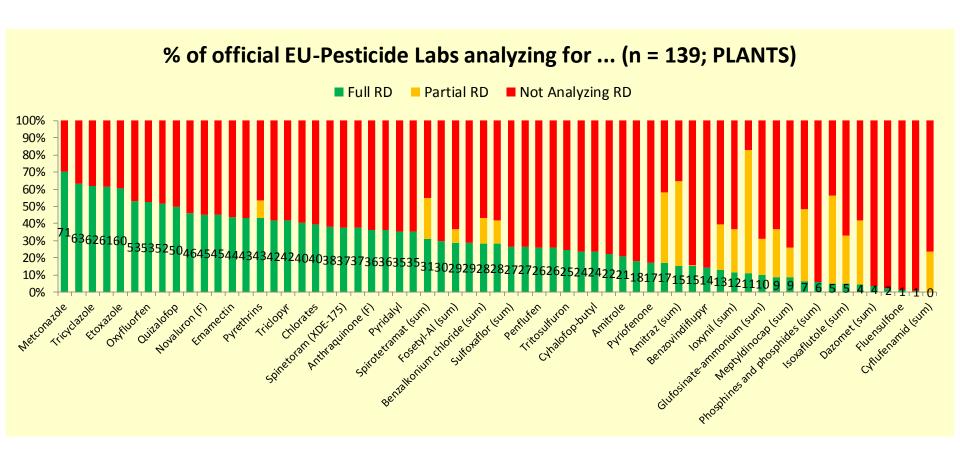
Background CS₂-Levels | Results

	Number of samples to be analyzed N° of intended samples to						
Crop	Require	Done	Missing	Intended to be	Still	be analyzed per Member	
	d	Done	iviissiiig	analyzed	missing	State	
Broccoli	59	23	36	28	8	DE (23), GR (4), PT (1)	
Brussels sprouts	59	1	58	1	57	PT (1)	
Cauliflowers	59	3	56	27	29	DE (22), GR (4), PT (1)	
Chinese cabbages	59	2	57	13	44	DE (12), PT (1)	
Chives	59	0	59	2	57	DE (2)	
Cress & similar	59	2	57	1	56	PT (1)	
Garlic	59	1	58	5	53	DE (5)	
Head cabbages	59	27	32	7	25	DE (3), GR (4)	
Horseradishes	59	0	59	1	58	PT (1)	
Kales	59	1	58	6	52	DE (6)	
Kohlrabies	59	2	57	9	48	DE (9)	
Land cress	59	0	59	5	53	DE (5)	
Leeks	59	62	/	23	-	DE (21), PT (2)	
Onions	59	10	49	10	39	DE (4), GR (4), PT (2)	
Papayas	59	1	58	21		DE (20), PT (1)	
Parsnips	59	0	59	5	3	DE (5)	
Radishes	59						
Rucola	59	Enough CS2-background data for leek!					
Spring onions 59							
Turnips	59	_	<u> </u>	-			

EURL DataPool | Surveys


EURL DataPool is used to run surveys:

- Update of Sample Scope by OFLs
 - -> invitation will be sent at the end of October
- Survey on Analytical Capabilities (currently ongoing)

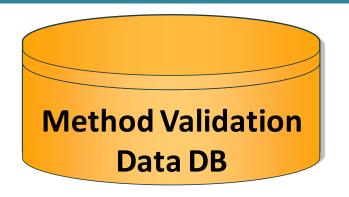

Surveys on Analytical Capabilities

- Surveys conducted on behalf of COM (2016, 2017, 2018 (ongoing))
- Goal of Surveys:
 how many EU-OFLs routinely analyze for full residue
 definition of pesticides that are included in MACP
 Working Document (chapter 4 of SANCO/12745/2013 Rev)?
- Participation (FV-OFLs): 69 % in 2017
 51 % in 2016

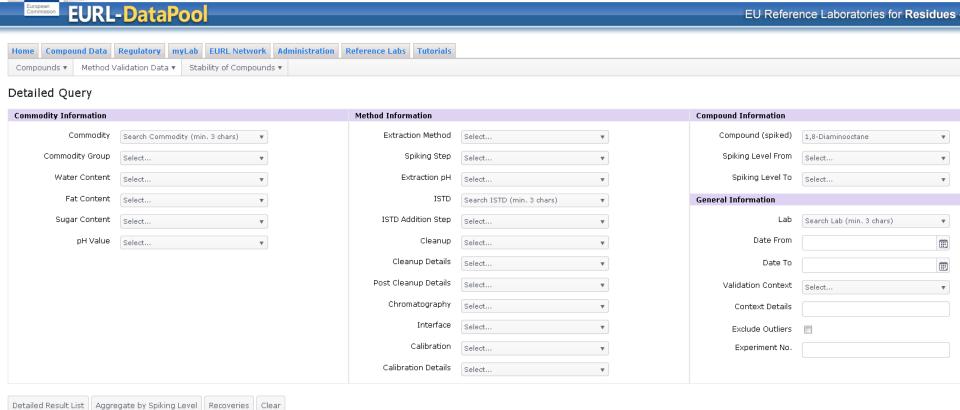
Survey on Analytical Capabilities | Survey 2018 is ongoing

Survey on Analytical Capabilities: Results from 2017-Survey

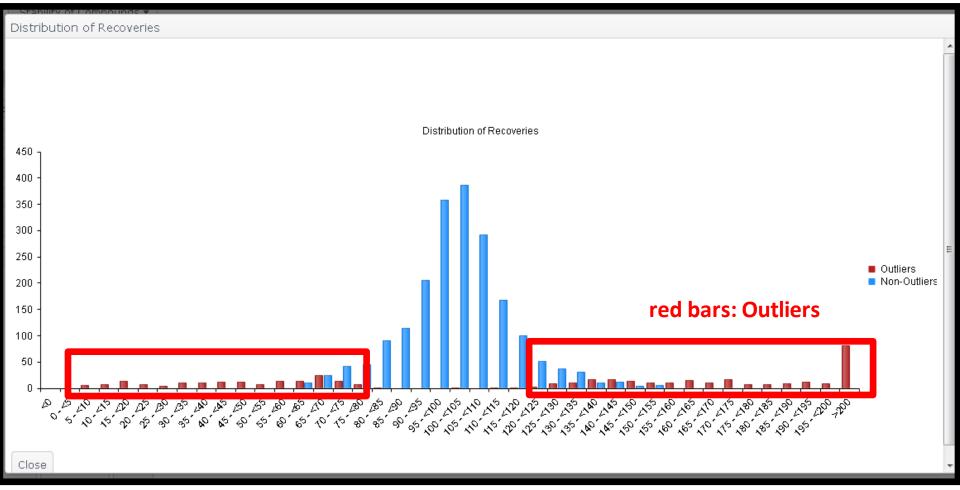
Survey on Analytical Capabilities: Results from 2017-Survey


- FULL RD is covered by ≥ 70% of participating OFLs
 - Metconazole
- **FULL RD** is covered by ≥ 50% and < 70% of participating OFLs
 - Metrafenone (F)
 - Tricyclazole
 - Cyazofamid
 - Etoxazole
 - Glyphosate
 - Oxyfluorfen
 - Proquinazid (R)

Survey on Analytical Capabilities: Results from 2017-Survey


• FULL RD is covered by less than 20% of participating OFLs: in total: 22 compounds; excerpt from the list:

RDs	# of OfLs intending to introduce RD/compound in 2018
Oxasulfuron	18
Pyriofenone	10
Amitraz (not approved)	DMF: 6; Amitraz: 5; DMPF: 6
MCPA and MCPB	Various MCPA esters: 4
	MCPA: 2
	MCPB: 3
Benzovindiflupyr	15
loxynil (sum of loxynil, its salts and its esters,	loxynil: 5
expressed as ioxynil (F))	Ioxynil-heptanoate: 4
	Ioxynil-octanoate: 5
Bifenazate	Bifenazate: 4
	Bifenazate-Diazene: 15
Sulfuryl fluoride	6
Fluensulfone	11
Cyflufenamid: sum of cyflufenamid (Z-isomer)	0
and its E-isomer	


Method Validation DB

- ≈500.000 recoveries
- submitted by 46 labs

Method Validation DB | Distribution of Recoveries

Query:

- Extraction Method: QuPPe
- Water Content: 30-80%
- Exclude Outliers: No

Method Validation DB | Outlier Calculation

Outlier – How do we calculate the Outliers?

- Grubbs Outlier Test:
 - Recoveries: 95% | 98% | 96% | 97% | 90% (=>
 outlier)
 - -> too strict for pesticide residue analysis!

- 1. Group the data by
 - Compound
 - Extraction Method
 - Commodity Group (according to AQC Guideline)
 - Extraction pH (of method)
 - Cleanup Principle
- 2. Exclude groups with less than 5 recoveries
- Calculate the median for each group: "Global Median"
 (only for groups with n(labs) > 2)

- 4. Compare "Global Median" with Experiment-Median:
 - N(recoveries) > 2:
 if Experiment-Median > 1 + 0.4* "Global Median"
 OR
 if Experiment-Median > 1 0.4* "Global Median"
 then whole Procedure => outlier
 - N(recoveries) < 3:
 if Experiment-Median > 1 + 0.6* "Global Median"
 OR
 if Experiment-Median > 1 0.6* "Global Median"
 then whole Procedure => outlier
 - All recoveries < 1 => outliers

- 5. Calculate the "Global Rel. Standarddeviation" (**Global RSD**) for each group:
 - Group the data by
 - Compound
 - Extraction Method
 - Commodity Group (according to AQC Guideline)
 - Extraction pH (of method)
 - Cleanup Principle

- 6. Compare the "Global RSD" with recovery-data set belonging to each group:
 - For **Global RSD** ≤ **10**%
 - If recovery < Global Median * (1 3 * Global RSD/100) => outlier
 - If recovery > Global Median * (1 + 3 * Global RSD/100) => outlier
 - For **Global 10%** < **RSD** ≤ **25** %
 - If recovery < Global Median * (1 2 * Global RSD/100) => outlier
 - If recovery > Global Median * (1 + 2 * Global RSD/100) => outlier
 - For Global RSD > 25 %
 - If recovery < Global Median * (1 1 * Global RSD/100) => outlier
 - If recovery > Global Median * (1 + 1 * Global RSD/100) => outlier

EURL DataPool | Take Home Message

- Search Tool for Accurate Mass Data
- PestiPedia = Tool to share experiences with other pesticide experts
- EURL DataPool is used to run surveys:
 - Analytical Capabilities on Pesticides
 - Update of official sample scope

- Outlier-Test in Method Validation DB:
 - -> open for discussion/contributions

Thank You for Your Attention

www.eurl-pesticides-datapool.eu