

PESTICIDE RESIDUE RESEARCH GROUP

European Union Reference Laboratory for Pesticide Residues in Fruits and Vegetables UNIVERSITY OF ALMERÍA, ALMERÍA, SPAIN

Evaluation of simultaneous MS and MS/MS method for detection and identification of pesticides residues in fruit and vegetables using LC-QToF

Sonia Herrera, Łukasz Rajski, Ana Lozano, Amadeo R. Fernández-Alba.

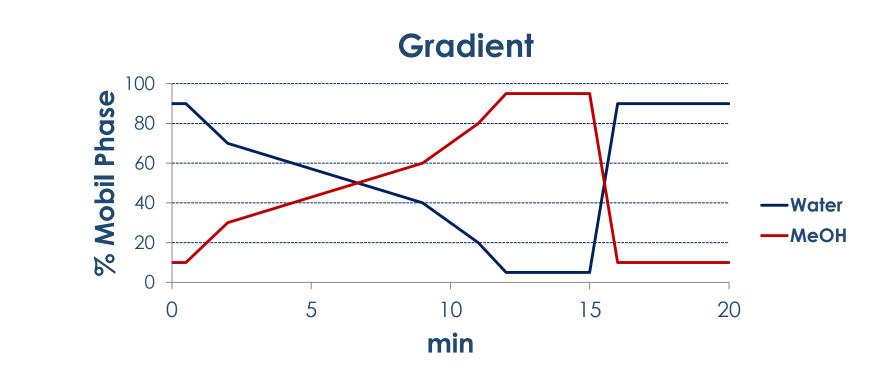
Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruits and Vegetables. University of Almería (Spain). e-mail: sonia.herrera@ual.es

Nowadays, a growth in the applications of accurate mass instruments is observed. The predominant type of mass spectrometer applied in pesticide analysis in fruits and vegetables is triple quadrupole. However, during last decade a great improvement has been made in the field of accurate mass spectrometry, today this kind of analyzer can be considered not only as a complementary technique but also as real alternative to triple quadropole mass spectrometers. The application of tandem accurate mass spectrometers operated simultaneously in full scan and MS/MS could give solutions when the identification approach applied full scan mode is not able to distinguish targeted pesticide from isobaric matrix compound.

This work presents application of LC-QTOF-MS/MS for detection, identification of pesticides in fruits and vegetables. Two different simultaneous MS-MS/MS workflows were used information dependent acquisition method (IDA) and data independent acquisition method (SWATH).

EXPERIMENTAL Sample handling

QuEChERS protocol


Extracts spiked at different concentration levels

Extracts diluted 10 times

Chromatography SCIEX ExionLC[™] AC system

Column: Phenomenex Kinetex Biphenyl 2.6µm (50 x 2.1mm) Mobile phase: A: Water (5 mM ammonium formate buffer) **B**: MeOH (5 mM ammonium formate buffer)

5000

> ToF MS accumulation time: 0.07

> ToF MS mass range: 110-750Da

ToF MS/MS mass range: 50-750

 \succ ToF MS/MS accumulation time: 0.035s

 \blacktriangleright Number of mass windows:12

 \succ Total scan time: 0.69s

Swath Parameters

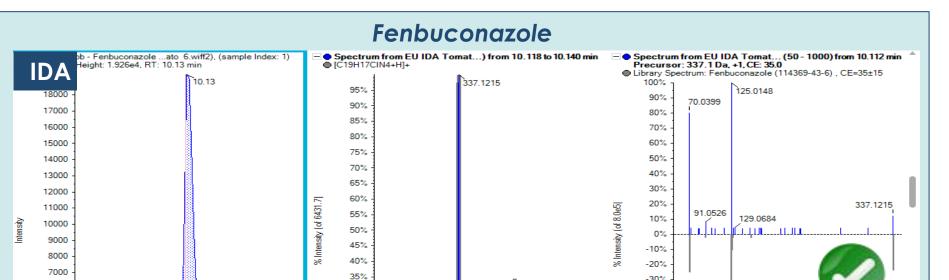
SCIEX X500R QTOF system

lon source

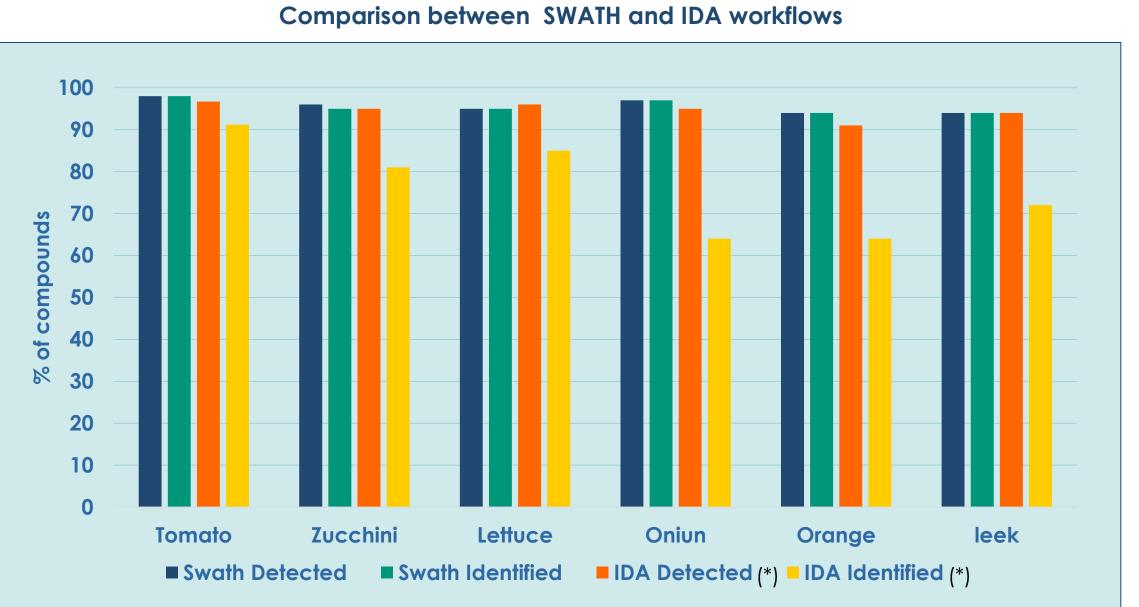
Gas1 and Gas2: 60 psi

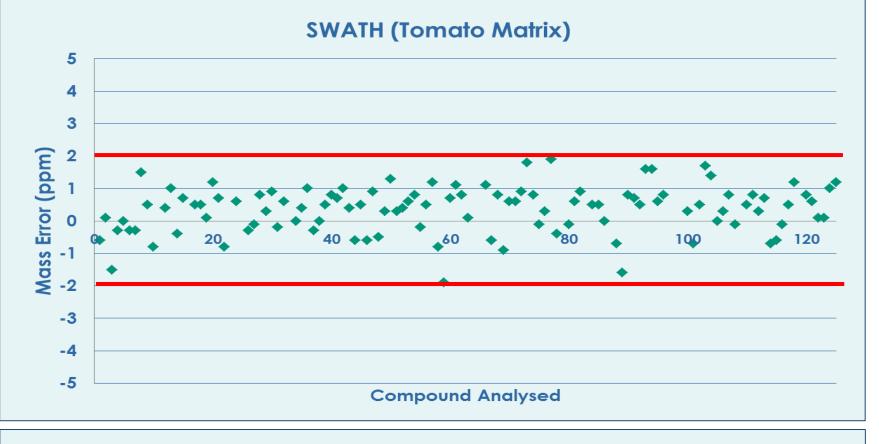
Curtain gas: 35psi

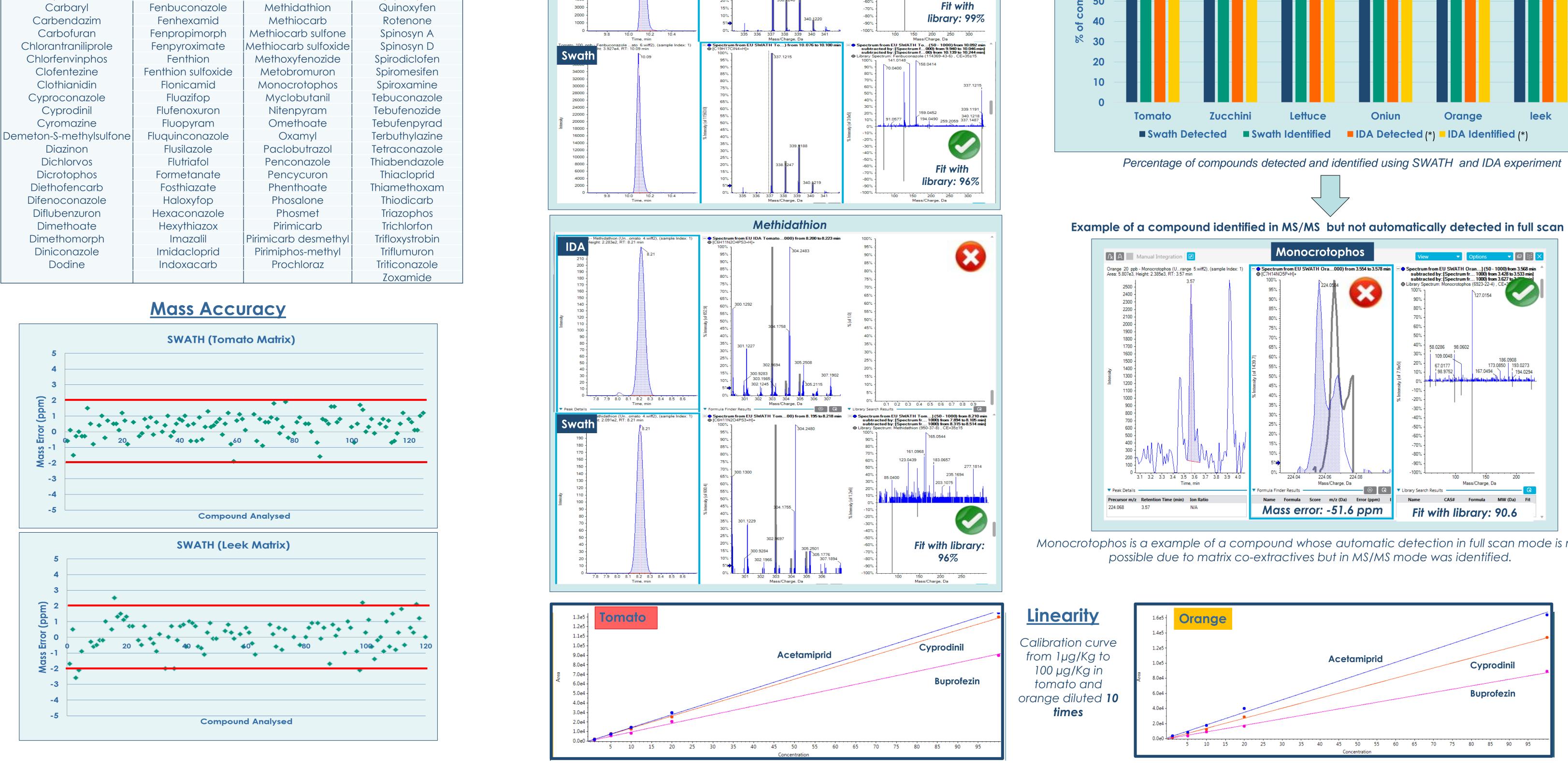
- > Temperature: 450°C
- Ion spray voltage: 5500V
 - > Polarity mode: Positive

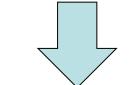

IDA Parameters

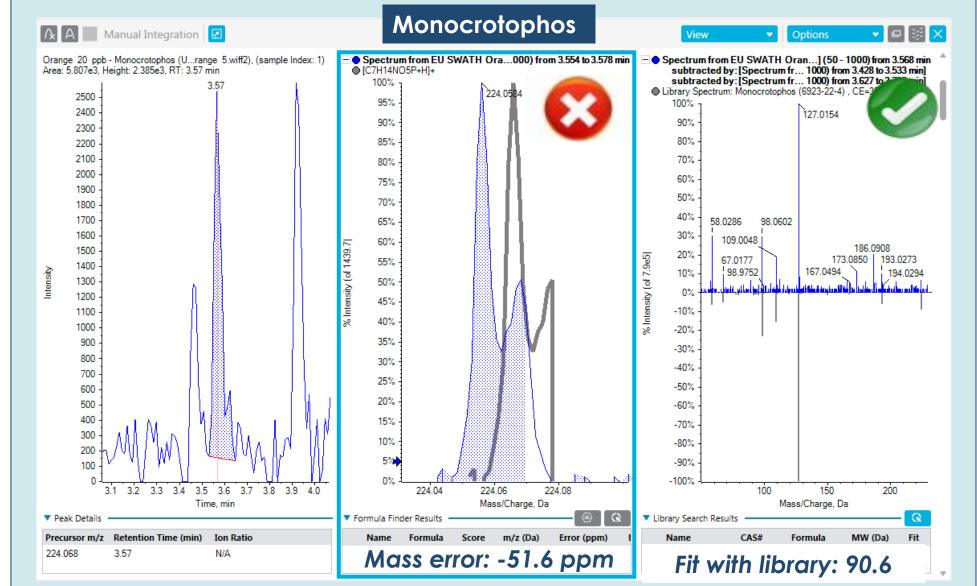
- \succ Total scan time: 0.61s
- \succ ToF MS accumulation time: 0.15
- > ToF MS mass range:110-750 Da
- Maximum candidate ions: 10 (most abundant)
- \succ ToF MS/MS accumulation time: 0.04s
- \succ ToF MS/MS mass range: 50-750
- Non-inclusion list of targeted compounds (*)


Compounds Evaluated (125)


Compounds from	n Multiannual Control	Programme for Pesticio	de Residues
Acetamiprid	Epoxiconazole	Iprovalicarb	Profenofos
Aldicarb	Ethion	Isocarbofos	Propamocarb
Aldicarb sulfone	Ethirimol	Isophenphos methyl	Propiconazole
Aldicarb sulfoxide	Ethoprophos	Kresoxim methyl	Propoxur
Azoxystrobin	Fenamidone	Linuron	Propyzamide
Bitertanol	Fenamiphos	Malathion	Pymetrozine
Boscalid	Fenamiphos sulfone	Mandipropamid	Pyraclostrobin
Bromuconazole	Fenamiphos sulfoxide	Mepanipyrin	Pyridaben
Bupirimate	Fenarimol	Metalaxyl	Pyrimethanil
Buprofezin	Fenazaquin	Metconazole	Pyriproxyfen
Carbaryl	Fenbuconazole	Methidathion	Quinoxyfen
Carbendazim	Fenhexamid	Methiocarb	Rotenone
Carbofuran	Fenpropimorph	Methiocarb sulfone	Spinosyn A
Chlorantraniliprole	Fenpyroximate	Methiocarb sulfoxide	Spinosyn D
Chlorfenvinphos	Fenthion	Methoxyfenozide	Spirodiclofen
Clofentezine	Fenthion sulfoxide	Metobromuron	Spiromesifen
Clothianidin	Flonicamid	Monocrotophos	Spiroxamine
Cyproconazole	Fluazifop	Myclobutanil	Tebuconazole
Cyprodinil	Flufenoxuron	Nitenpyram	Tebufenozide
Cyromazine	Fluopyram	Omethoate	Tebufenpyrad
Demeton-S-methylsulfone	Fluquinconazole	Oxamyl	Terbuthylazine
Diazinon	Flusilazole	Paclobutrazol	Tetraconazole
Dichlorvos	Flutriafol	Penconazole	Thiabendazole
Dicrotophos	Formetanate	Pencycuron	Thiacloprid
Diethofencarb	Fosthiazate	Phenthoate	Thiamethoxam
Difenoconazole	Haloxyfop	Phosalone	Thiodicarb
Diflubenzuron	Hexaconazole	Phosmet	Triazophos
Dimethoate	Hexythiazox	Pirimicarb	Trichlorfon
Dimethomorph	Imazalil	Pirimicarb desmethyl	Trifloxystrobin
Diniconazole	Imidacloprid	Pirimiphos-methyl	Triflumuron
Dodine	Indoxacarb	Prochloraz	Triticonazole
			Zoxamide


Identification-IDA vs Swath (examples)




Detection and identification

Monocrotophos is a example of a compound whose automatic detection in full scan mode is not

1. Regarding mass accuracy, all evaluated compounds in all studied matrices (tomato, lettuce, leek, onion, orange and zucchini) presented mass error below 5 ppm and the majority of them, even below 2ppm.

2. The results show good detection and identification in MS/MS acquisition mode is less confident due to loss of information in MS/MS experiment when a targeted list is not considered. Therefore, swath method is the workflow recommended to work.

3. In some cases the percentage of identified compounds is higher than the detected compounds. This is because the natural components present in the matrix can affect in the detection of the targeted compounds because a targeted list is not included in the acquisition method.

4. Over 95% of the evaluated compounds present a lineal range between 1-100 μ g/Kg.

Acknowledgements: The authors acknowledge funding support from the European Commission, DG SANTE, Specific Agreement No. 7 of Framework Partnership Agreement No Zeng from SCIEX for the technical support.