

EURL-SRM - Analytical Observations Report

concerning the following...

- **Compound(s)**: 3-Hydroxycarbofuran, Abamectin, Amitrole, Cotinine, Diclofop, Diquat, Emamectin, Fentin, Gamma-Cyhalothrin, Haloxyfop, Nicotine, , PTU, Topramezone,
- Additional compounds: Chlorate, Cyanuric acid, Ethoxyquin dimer, Melamine, Paraquat, Perchlorate, Phosphonic acid Thiocyanate, Triazole acetic acid, Triazole lactic acid, Triazole alanine and Trifluoroacetic acid
- **Commodities**: Infant formulae of various types and milk
- Extraction Method(s): Citrate buffered QuEChERS (EN 15662), QuPPe

EURL-SRM

Instrumental analysis: LC-MS/MS, IC-MS/MS

Analysis of Toxicologically Critical SRM Compounds in Infant Formulae and Milk-Part 1: Analytical Aspects

Version 2 (last update: 10.03.2021)

1. **Background information:**

Following a request by DG-SANTE, EFSA prepared a scientific opinion in May 2018¹, in which it was concluded that for infant food for children up to 16 weeks of age, the default MRL of 0.01 mg/kg currently applying for infant formulae (Reg. 141/2006/EC)², may not be sufficiently protective for pesticides with ADI values below a health-based guidance value (HBGV) of 0.0026 mg/kg bw per day.

Based on this evaluation, DG-SANTE identified a number of compounds, with ADI values <0.0026 mg/kg bw per day, and calculated the highest possible MRLs for reconstituted infant formulae, that would be still considered safe for children up to 16 weeks of age. Thereafter, the EURLs were asked to comment on the technical feasibility of monitoring these compounds at or below the MRLs considered safe for infant food. The EURLs were further asked to develop and validate methods for a number of compounds and to conduct a pilot monitoring study for infant formulae of various types and origins. In addition, milk should be analysed. The LOQs of these methods should be equal or lower than the levels considered safe.

The selected, toxicologically critical compounds were divided into the following groups in collaboration with the EURL-AO: a) MRM (amenable to multiresidue methods), b) MRM/SRM (requiring modified MRM methods or where markers can be first screened by an MRM-method triggering re-analysis by a SRM in case of positive findings); c) SRM (compounds not amenable to

EU Reference Laboratory Requiring Single Residue Methods (EURL-SRM) CVUA Stuttgart, Schaflandstr. 3/2, 70736 Fellbach, Germany EURL@cvuas.bwl.de

¹ Scientific opinion on pesticides in foods for infants and young children; https://www.efsa.europa.eu/de/efsajournal/pub/5286

² Regulation 2006/141/EC referring to infant formulae and follow-on formulae repealed by Regulation 609/2013/EU

multiresidue methods). Compounds classified as SRM are listed in Table 1 and those classified as MRM/SRM in Table 2.

JRL-SRM

At a meeting with DG-SANTE and MSs in Brussels it was agreed to exclude certain of the initially selected compounds from the pilot monitoring survey for various reasons, including analytical difficulties and the likelihood of encountering a compound in infant formulae. These reasons for excluding those compounds are compiled in Table 1 and Table 2. The compounds that were agreed to skip in this pilot monitoring are marked in grey.

It was further agreed to start with the analysis of the collected milk samples and then continue with the infant formulae. Amongst the infant formulae it was decided to start with "normal" products and continue with products for special groups.

The focus of the project was to examine the residue situation of toxicologically critical compounds in infant food formula. Still, it was decided to include to the scope, certain additional compounds known to be ubiquitous in the environment and therefore frequently encountered in various food commodities, such as nicotine, trifluoroacetic acid, chlorate and phosphonic acid (see

Table **3**). Some of these compounds are of toxicological concern (e.g. chlorate) and others are suspected of potentially exceeding the default MRL of 0.01 mg/kg applying to infant food formulae and dietary food.

Table 1: Compilation of SRM-compounds with critical toxicology. Compounds agreed to be excluded from the pilot monitoring are marked in grey

Compound	Residue Definition	ADI (mg/kg bw per day)	Max. MRL/LOQ for reconst. products (mg/kg)	Max. LOQ for infant formula powder ³ mg/kg)	Appr.	Notes and reasons for exclusion from pilot monitoring
Abamectin	Avermectin B1a	0.0025/0.001254	0.0096 / 0.0048 ⁴	0.072 /0.0364	1	Toxicological endpoints were modified in Aug 2020
Emamectin	Emamectin benzoate B1a, expressed as emamectin	0.005	0.0019	0.0143	~	
Fentin	Fentin (fentin including its salts, expressed as triphenyltin cation)	0.0004	0.0015	0.0113	×	
Amitrole	Amitrole	0.001	0.0038	0.0285	x	NL listed in pesticide database
Nicotine	Nicotine	0.0008	0.0031	0.0233	x	Natural occurrence and potential for cross contaminations through contact with hands, soil and air. The inclusion of the animal metabolite cotinine was considered useful
РТU	Regulated in current infant food regulation (MRL of 0.003 mg/kg)	0.0003	0.0012	0.015	x	Max. period of grace for propineb June 2019. PTU is a byproduct in propineb formulations, it is also a degradant of propineb in the field and during food processing. It is not regulated in 396/2005/EC but it has its proper MRLs established in the baby food regulation (0.003 mg/kg)
Diquat	Diquat	0.002	0.0076	0.057	x	Max period of grace: 4 February 2020
Topramezone	Topramezone (BAS 670H)	0.001	0.0038	0.0285	Ρ	Pending Approval (provisional authorizations in EL, NL)
Chloropicrin	Chloropicrin	0.001	0,0038	0.0285	x	It was agreed to skip this fumigant from the pilot monitoring, as there were some analytical difficulties due to degradation of the compound during analysis.
1-Methyl-cyclopropene (1-MCP)	1-Methyl-cyclopropene	Formerly 0.0009, now 0.02	0,0035 (old) 0.076 (new)	0.57 (new)	~	Given the shift in the toxicological threshold and the very low likelihood of relevant residues in milk, It was agreed to exclude this compound from the pilot monitoring
Metam	Dazomet (Methylisothiocyanate resulting from the use of dazomet and metam)	Metam: 0.001 MITC: 0.004	0,0038 (Metam) 0.015 (MITC)	0.0285 (metam) 0.11 (MITC)	~	Due to the fast degradation of Metam (and Dazomet) in soil, MITC is the marker compound for the residue definition. The ADI of MITC (methyl isothiocyanate) = 0,004, exceeds the threshold Of 0.0026 mg/kg bw. It was thus agreed to remove this compound from the scope of the pilot monitoring.
Methyl bromide	Bromide ion	0.001 for (intact MeBr)	0,0038	0.0285	×	The toxicity threshold refers to MeBr, which is unlikely to be found in intact form in products of animal origin, as it degrades to bromide ion. Levels of intact MeBr decrease rapidly during aeration. Analyzing residues of bromide ion seems superfluous as it does not pose any toxicological concerns and as natural levels of bromide ion in milk are quite high anyway (intake through feed).
Cyanamide	Cyanamide	0.002	0,0076	0.057	×	Not approved (as pesticide). According to an EFSA report, cyanamide degrades rapidly and incorporates into natural plant products. In animals it is intensively metabolised with the major metabolite being N- acetylcyanamide ⁵ . Cyanamide is widely used as a fertilizer , with the most common cyanamide-containing product (Perlka) containing 45% of cyanamide and being typically employed at 200 and 450 kg/ha. Considerable exposure of farm workers, neighbouring residents and animals is thus expected. Cyanamide use is also used for the control of certain pests such as snails. It is also reported to control salmonella in liquid sewage ⁶ . Cyanamide has been, furthermore, in use for many years as a deterrent to alcohol consumption at doses (>20 mg/person/ day). These medicinal doses clearly exceed the ADI. A reassessment of the risks associated with cyanamide exposure seems indicated. Analytically, cyanamide poses immense difficulties and the EURL has no routinely applicable method at the time being.

³ Based on a conversion factor of 7.5

⁴ New ADI value introduced after finalizing the analyses of the present study (published in Peer review of the pesticide risk assessment of the active substance abamectin; EFSA Journal 2020;18(8):6227; Link: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2020.6227

⁵ https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1873

⁶ (https://ec.europa.eu/health/sites/health/files/scientific_committees/environmental_risks/docs/scher_o_169.pdf)

Table 2: Compilation of MRM/SRM-Compounds with critical toxicology. Compounds decided to exclude from the pilot monitoring are marked in grey

Compound	Residue Definition	ADI (mg/kg bw per day)	Max. MRL/LOQ for reconst. products (mg/kg)	Max. LOQ for infant formula powder (mg/kg)	EU Approval	Notes and reasons for exclusion from pilot monitoring
Diclofop	Diclofop (sum diclofop-methyl and diclofop acid expressed as diclofop-methyl)	0.001	0.0038	0.0285	~	Approved : It was decided that for the pilot monitoring it would be acceptable to focus on free diclofop and to reanalyse by a method including the methyl ester and possibly also conjugates, in case of a positive finding of diclofop free acid. The methyl ester of diclofop is MRM amenable, but according to literature, it is rapidly hydrolyzed in plants, thus no residues in food of animal origin are actually expected.
Dicofol	Dicofol (sum of p, p' and o,p' isomers)	0.002	0.0076	0.057	×	Not approved. Given the instability of dicofol in GC-applications, it was agreed to analyse for dicofol (sum) after a positive screening result by a multiresidue method focusing on the degradant p,p'dichlorobenzophenone and dicofol. Within the pilot monitoring, this screening was agreed to be done by the EURL-AO
Gamma-Cyhalothrin	Lambda-cyhalothrin (includes gamma-cyhalothrin) (sum of R,S and S,R isomers) (F)	Gamma 0.0012 Lamda 0.0025	gamma 0.0046, lambda 0,0095	gamma 0.035 Lambda 0.071	~	Approved (both gamma and lambda) It was decided that for the pilot monitoring it would be acceptable to focus on the analysis of cyhalothrin by a multiresidue method and, in case of a positive result, to reanalyse by a method allowing enantiomeric separation of the two constituent isomers of lambda cyhalothrin and the quantification of the gamma-isomer which is the most toxic. Within the pilot monitoring, the analysis of lambda cyhalothrin was agreed to be done by the EURL-AO
3-Hydroxycarbofuran	3-OH-carbofuran (free and conjugated) expressed as carbofuran	3-OH-CF 0.00015 Related comp. CF: 0.00015 BF: 0.0035 FT: 0.0035 CS: 0.005	0.0006	0.0045	x	Not approved (None of the relevant products carbofuran, benfuracarb, furathiocarb, carbosulfan) In the pilot monitoring iot was decided that it would be acceptable to focus on residues of free 3-OH carbofuran as a marker and to perform re-analyses by a method involving de-conjugation in case of a positive screening result. Within the pilot monitoring, the analysis of carbofuran was agreed to be done by the EURL-AO
Haloxyfop	Sum of haloxyfop, its salts and conjugates expressed as haloxyfop (sum of the R- and S- isomers at any ratio)	0.00065	0.0025	0.01875	~	Approved . It was decided that for the pilot monitoring it would be acceptable to focus on free haloxyfop and to re-analyse by a method entailing alkaline hydrolysis only in case of a positive finding of haloxyfop free acid.
Sulcotrione	CMBA (2-chloro-4- (methylsulfonyl)benzoic acid)	0.0004 (parent)	0.0015 (parent)	0,0114 (parent)	1	Approved: The RD for food of AO only contains CMBA. According to EFSA, CMBA is the major constituent of the residue in maize forage and grains. Furthermore EFSA notes that CMBA exhibits a much lower toxicity than its parent sulcotrione (ca 100 times lower toxicological burden). Concerning residues in Milk: EFSA notes that residues of CMBA are very low (<0.005 mg/kg at an exposure rate of the animals 3 times higher than the critical dietary burden for ruminants). Based on the above facts it was decided to exclude sulcotrione/CMBA from the present study

Table 3: Compounds that were additionally analysed during the project to supplement the scope regarding compounds that are likely to be encountered in infant foods or their ingredients

Compound	ADI (mg/kg bw per day)	Notes
Ethoxyquin-Dimer (EQDM)	0.005	Ethoxyquin is used as antioxidant agent in fish feed and in dried cereals. Degrades to a multitude of metabolites of which Ethoxyquin-Dimer (EQDM) is the most prominent in salmon. EQDM is also more stable than EQ. In infant food formulae fish oil is a frequent ingredient as it is rich in polyunsaturated fatty acids
Trifluoro acetic acid (TFA)	0.05	TFA is a pesticides metabolite of fluorine containing active substances. Moreover, it is generated during decomposition of coolants. It was detected in drinking and surface water and can be classified as environmental contaminant.
Chlorate	0.01	Former herbicide and biocide. Currently not approved as active substance. A by-product of disinfection of drinking water and therefore of wash, process and irrigation water which is coming in contact to food and food contact materials. It is often found as residue in milk. Temporarily inhibits the intake of iodine in the thyroid gland.
Perchlorate	0.0003 (TDI)	Persistent and ubiquitous environmental contaminant. Mainly originating from fertilizers, may be also formed as a byproduct of disinfection of drinking water. Temporarily inhibits the intake of iodine in the thyroid gland. Regulated by Reg. 1881/2006/EC as a contaminant
Phosphonic acid	2.25	Fungicide. Additional input from fertilizers. Plants presumably accumulate phosphonates; also after transition periods of several years with no application, residues are detected in fruits.
Triazole derivative metabolites: • 1,2,4-Triazole-acetic acid (TAA) • 1,2,4-Triazole-lactic acid (TLA) • 1,2,4-Triazol-1-yl-alanine (TA)	TAA: 1* TLA: 0.3* TA: 0.3*	Triazole derivative metabolites result from the use of pesticides belonging to the group of triazoles, which contain a triazole moiety in their structure. 1,2,4-Triazole is also used as a nitrification inhibitor in fertilizers and may convert to TAA, TLA and TA within the plants.
Thiocyanate	?	Not approved active substance and naturally occurring in foodstuff especially in brassicaceae. Brassicaceae especially rape is potential feedingstuff for cows. Rape seed oil is a common ingredient in infant food formulae. Temporarily inhibits the intake of iodine in the thyroid gland.
Paraquat	0.004	Not approved active substance and herbicide.
Melamine	0.2	Metabolite of the insecticide Cyromazine (not approved). In relation to a food fraud scandal in 2008 it was revealed that melamine was used to adulterate infant formulae simulating high milk protein contents by the presence of nitrogen. Formed through trimerization of cyanamide fertilizers. Also Metabolite of cyromazine (pesticide and vet. drug). May also originate from cyanamide-based fertilizers (trimerization of cyanamide) as well as urea-based fertilizers (through trimerisation of urea and elimination of ammonia and carbon dioxide, Non-cyclic dimer (biuret) and trimer (triuret) are also formed). Melamine hydrolyzes to cyanuric acid via ammeline and ammelide. Melamine is widely used in the synthesis of melamine-formaldehyde resins used in synthetic surfaces of furniture and textiles, kitchenware, moulding, packaging materials. Also used as a fire-retardant. Regulated by Reg. 1881/2006/EC as a contaminant
Cyanuric acid	1.5 (TDI by WHO 2008)	Non-regulated metabolite and hydrolysis product of various pesticides. Compound originating from multiple sources, e.g.: Triazine pesticides (incl. the herbicides terbuthylazine, atrazine, cyanazine, the fungicide; anilazine and the insecticide cyromazine). From the above only terbuthylazine and cyromazine are currently in use within the EU, with the latter having lost approval. Cyanamide-based fertilizers. Cyanamide contained in fertilizers may convert to melamine through trimerization, which can further hydrolyze to cyanuric acid. Urea-based fertilizers or feed: Especially at high temperatures, urea loses ammonia converting to to isocyanic acid (HNCO), which trimerizes to cyanuric acid. Mono-, Di- and Trichloroisocyanurates: Used as disinfectants, algaecides and bactericides. They are used in sanitation liquids and bleaching agents as well as in swimming pools (pool-tabs) to retard the loss of chlorine in chlorinated water. In water, they gradually convert to cyanuric acid. Natural formation of cyanuric acid has also been reported (e.g. in humus).

*Peer review EFSA

Infant formula, also known as baby formula, is mostly based on skimmed cows' milk or whey, which is mixed with vegetable fats, oils, emulsifiers, vitamins, minerals and stabilizing agents. The mixture is pasteurized and then dried into a powder. Infant food for babies below 16 weeks of age can be classified into the following groups:

- a) 'Normal' infant formula
- b) Lactose-free infant formula (containing whey, in which lactose was hydrolysed to glucose and galactose)
- c) Hypoallergenic infant formula (containing extensively hydrolysed milk proteins)
- d) Anti-reflux infant formula (containing thickening agents)

EURL-SRM \Upsilon

- e) "Comfort formula" for Infants with digestive problems such as colic and constipation (contains partly hydrolysed proteins)
- f) Plant-based infant formula (based on e.g. soy or rice)

Any of these formulae can be certified as organic. Infant formula products are usually sold as powders, which have to be made up (reconstituted) with water to a liquid product. Some of the products are also offered on the market in reconstituted form, i.e. ready-to-feed formulae.

Infant formulae contain large numbers of ingredients with various chemical characteristics generating complex matrices. Individual compositions of infant food formulae largely dependent on the respective group, e.g. hypoallergenic infant formula contains extensively hydrolysed milk proteins for infants that suffer from milk protein allergies. Furthermore, compositions can also differ between products from the same group. Table 4 gives an insight in compositions of infant food formula products from different groups. Ingredients that are regularly added regardless of group and feature are for example vegetable oils thereof mainly palm, rape and sunflower seed oil and in addition fish oil for the alimentation with polyunsaturated fatty acids.

Most of the milk-based products are based on cow's milk derivatives but there are also formulae on the market that are based on milk of other animals, such as goats.

As cow's milk is a major ingredient and initial product of mostly all kinds of infant formula, it was decided to analyse milk samples in addition to the samples of infant food formula. The developed methods were therefore validated and used in cow's milk as well.

The consumption figures of infant formulae refer to reconstituted (ready-to-feed) products, so the "safe MRLs" and the maximum LOQs that would need to be reached for the various compounds were calculated on reconstituted products. For calculating the maximum LOQs for non-reconstituted powders the preparation recipes were taken into account. The recipes of the various products were largely similar, with conversion factors from powder to reconstituted product ranging between 7.52 and 7.98 (7.87 on average), see Table 5. Finally, it was decided to multiply the maximum MRL in the ready-to-use infant formula (IFRTU) by the factor 7.5, resulting into the most conservative MRLs in the infant formula powder (IFP).

Ingredient		Group a)			Group b)		Group c)		Group d)		Group e)		Group f)	
				Goat										
Skimmed milk	1	1	1						1					
Full fat milk powder (in this case goat)				1										
		-	-	-		_				_		-		
Whey powder	2	2							2		1	4		
Hydrol. whey powder							3	3						
Milk Casseins					3									
Sol. Milk proteins						3								
Plant protein (soy or rice)													3	3
Vegetable Oil (Palm, rape, sunflower)	3	3	3	4	2	2	2	2	3	4	2	1	2	2
Milk fat														
Mid Chain TGs					4									
Fish oil	✓	✓	✓	-	✓	✓	-	-	✓	-	✓	✓	-	-
		-	-	-		-		-		_	-	-		
Lactose	5	4	5	3			1	1	5	1	6	3		
Other Oligosaccharides (mainly fructose-based)		5					4	4			5	6		
Maltodextrin	4	6	2	2		4			4			2	1	
Glucose sirup					1	1					3			1
Starch (Potatoes, Maize)			4							2	4	5	4	
Thickener (Carob flour)									6					

Table 4: Exemplary compositions of infant formulae (only major ingredients are shown); the columns refer to individual samples, the numbers refer to the <u>rank</u> in the ingredients lists

Table 5 : Exemplary calculations of conversion factors of products belonging to categories a) to e) based on the
preparation instructions on the package. The most conservative factor is highlighted in yellow

		Dourdon	Motor	Reconstitud	MRL Factor	
Category	Brands	(g)	(ml)	Weight (g)	Moisture (%)	powder vs reconst.
	DM	13.0	90	103	87.4	7.92
	Holle	13.2	90	103.2	87.2	7.82
	Nestle	12.9	90	102.9	87.5	7.98
aj Normai	Novalac	12.9	90	102.9	87.5	7.98
	Nestle	13.1	90	103.1	87.3	7.87
	Average	13.02	90	103.0	87.4	7.91
	Aptamil	12.9	90	102.9	87.5	7.98
b) Lactose-free	Guigoz	13.25	90	103.2	87.2	7.82
	NAN	12.9	90	102.9	87.5	7.98
	Average	13.0	90	103.0	87.4	7.92
	Humana	13.2	90	103.2	87.2	7.82
	Guigoz	13.2	90	103.2	87.2	7.82
	Aptamil	13.8	90	103.8	86.7	7.52
c) Hypo-allergenic	NAN	13.1	90	103.1	87.3	7.87
	Beba	13.1	90	103.1	87.3	7.87
	Average	13.28	90	103.3	87.1	7.78
	SMA	12.9	90	102.9	87.5	7.98
d) Ant: Dofley	Aptamil	13.2	90	103.2	87.2	7.82
aj Anti-Kenux	Нірр	12.9	90	102.9	87.5	7.98
	Average	13.0	90	103.0	87.4	7.92
e) Anti-Colic	Нірр	13.2	90	103.2	87.2	7.82
Total	Average	13.1	90	103.1	87.3	7.87

2. Compound details:

EURL-SRM

 Table 6: General information on substances amenable to the QuEChERS extraction method.

IUPAC: Triphenyltin						
Parameter	Value					
Molecular Mass	350.0 g/mol		~			
Formula	C ₁₈ H ₁₅ Sn					
Exact mass	351.01957 g/mol					
рКа	-		// \ <u></u> \$n⁺// \			
LogKow	3,43 (for fentin hy	droxid) ⁷				
Residue definition EU	Fentin (fentin inclu	uding its salts, expres	sed as triphenyltin cation) (F)			
Fentin is approved in	Not Approved					
ADI / ARfD	ADI: 0.0004 mg/kg	; bw per day / ARfD: (0.001 mg/kg bw			
There are two types of fent	in salts on the ma	arket: acetate and	hydroxide. The counter ion dissociates in aqueous			
environment						
Name: Haloxyfop (CAS: 69806-34-4) IUPAC: (RS)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid						
Parameter	Value					
Molecular Mass	361.7 g/mol		5			
Molecular Mass Formula	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄		F			
Molecular Mass Formula Exact mass	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol		F			
Molecular Mass Formula Exact mass pKa	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27					
Molecular Mass Formula Exact mass pKa	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4	FAO ⁸				
Molecular Mass Formula Exact mass pKa LogD	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7	FAO ⁸				
Molecular Mass Formula Exact mass pKa LogD	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7 0.21 @ pH 10	FAO ⁸				
Molecular Mass Formula Exact mass pKa LogD	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7 0.21 @ pH 10 PO : Haloxyfop (Su	FAO ⁸ m of haloxyfop, its	HO HO			
Molecular Mass Formula Exact mass pKa LogD Residue definition EU	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7 0.21 @ pH 10 PO : Haloxyfop (Su (sum of the R- and AO : Sum of haloxy	FAO ⁸ m of haloxyfop, its S- isomers at any rat fop. its salts and cor	$HO_{O} \xrightarrow{CH_3} \xrightarrow{CI \xrightarrow{F}} F$ esters, salts and conjugates expressed as haloxyfop io)) (F)			
Molecular Mass Formula Exact mass pKa LogD Residue definition EU	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7 0.21 @ pH 10 PO : Haloxyfop (Su (sum of the R- and AO : Sum of haloxy isomers at any rati	FAO ⁸ m of haloxyfop, its S- isomers at any rat fop, its salts and cor o)	$\begin{array}{c} F \\ H \\ O \\ O \\ H \\ O \\ O \\ H \\$			
Molecular Mass Formula Exact mass pKa LogD Residue definition EU Haloxyfop is approved in	361.7 g/mol C ₁₅ H ₁₁ ClF ₃ NO ₄ 361.03287 g/mol 4,27 2.8 @ pH 4 0.27 @ pH 7 0.21 @ pH 10 PO : Haloxyfop (Su (sum of the R- and AO : Sum of haloxy isomers at any rati AT, BE, CZ, DE, HU,	FAO ⁸ m of haloxyfop, its S- isomers at any rat fop, its salts and cor o) LU, NL, PL, RO, SK	$HO_{action} CH_{3} CI_{action} F_{b}$ esters, salts and conjugates expressed as haloxyfop io)) (F) ajugates expressed as haloxyfop (sum of the R- and S-			

⁷ Tomlin, C.D.S. (ed.). The Pesticide Manual - World Compendium, 11 th ed., British Crop Protection Council, Surrey, England 1997, p. 534

 $^{^{8}\} http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation09/Haloxyfop.pdf$

Name: 3-Hydroxycarbofura IUPAC: 1-[(3-hydroxy-2.2-dimethyl-	n (CAS: 16655-82-6) 2.3-dihvdro-1-benzofuran-7-vl)oxvl-N-methvlmetha	nimidic acid					
Parameter	Value						
l'arameter	Value						
Molecular Mass	237.3 g/mol	<u>о</u>					
Formula	C ₁₂ H ₁₅ NO ₄ H ₃ C NH O						
Exact mass	237.10010 g/mol						
рКа	13 (OH-group, very weak acid)	13 (OH-group, very weak acid)					
LogKow/logP	1.13 (pH 0-11; Chemicalize)						
Residue definition EU	 AO: 3-OH-carbofuran (free and conju PO:Carbofuran (sum of carbofuran (i benfuracarb or furathiocarb) and 3-O 	 AO: 3-OH-carbofuran (free and conjugated) expressed as carbofuran PO:Carbofuran (sum of carbofuran (including any carbofuran generated from carbosulfan, benfuracarb or furathiocarb) and 3-OH carbofuran expressed as carbofuran) 					
Approved in	None of the possible parent compou	nds is approved					
ADI / ARfD	ADI: 0.00015 mg/kg bw per day / ARfD; 0.00015 mg/kg bw EFSA: concluded that the toxicological values proposed for carbofuran are also applicable to its main metabolites; 3-OH-carbofuran and 3-keto-carbofuran.						
Name: Diclofop (CAS: 40843 IUPAC: (RS)-2-[4-(2,4-dichlorophene	3-25-2) oxy)phenoxy]propionic acid						
Parameter	Value						
Molecular Mass	327.2 g/mol						
Formula	C ₁₅ H ₁₂ Cl ₂ O ₄						
Exact mass	326.01126 g/mol						
рКа	3.43 (carboxy group, weak acid)	ОГ № ОГ ОН					
LogKow/logD	3.5 (pH4); 2.5 (pH5); 1.6 (pH6)	CI					
Residue definition EU	Diclofop (sum diclofop-methyl and d	iclofop acid expressed as diclofop-methyl)					
Approved in	EL, ES, IT, PT						
ADI / ARfD	ADI: 0.001 mg/kg bw per day						
Name: Avermectin B1a (CA IUPAC: (1'R,2S,4'S,5S,6R,8'R,10'E,12 methoxy-6-methyloxan-2-yl]oxy}-4 tetracyclo[15.6.1.1^{4,8}.0^{20,24}]	Name: Avermectin B1a (CAS: 65195-55-3) IUPAC: (1'R,2S,4'S,5S,6R,8'R,10'E,12'S,13'S,14'E,16'E,20'R,21'R,24'S)-6-[(2S)-butan-2-yl]-21',24'-dihydroxy-12'-{[(2R,4S,5S,6S)-5-{[(2S,4S,5S,6S)-5-hydroxy-4- methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,11',13',22'-tetramethyl-5,6-dihydro-3',7',19'-trioxaspiro[pyran-2,6'- tetracyclo[15.6.1.1^{4,8}.0^{20,24}]pentacosane]-10',14',16',22'-tetraen-2'-one						
Parameter	Value						
Molecular Mass	873.1 g/mol						
Formula	C ₄₈ H ₇₂ O ₁₄						
Exact mass	872.49220 g/mol						
рКа	12,5 (very weak acid)	ОН					
LogKow/logD	5,8 (at any pH; Chemicalize)	O H OH					
Residue definition EU	PO: Abamectin (sum of avermectin E B1a, expressed as avermectin B1a) (I AO: Avermectin B1a	PO: Abamectin (sum of avermectin B1a, avermectin B1b and delta-8,9 isomer of avermectin B1a, expressed as avermectin B1a) (F) AO: Avermectin B1a					
Abamectin is approved in	AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK, UK						
ADI / ARfD	ADI: 0.0025 mg/kg bw per day						

EURL-SRM 💕

00

Name: Emamectin B1a (CAS: 121124-29-6)

EURL-SRM

IUPAC: (10E,14E,16E)-(1R,4S,5'S,6S,6'R,8R,12S,13S,20R,21R,24S)-6'-[(S)-sec-butyl]-21,24-dihydroxy-5',11,13,22-tetramethyl-2-oxo-(3,7,19trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene)-6-spiro-2'-(5',6'-dihydro-2'H-pyran)-12-yl 2,6-dideoxy-3-O-methyl-4-O-(2,4,6-trideoxy-3-O-methyl-4-methylamino-α-L-lyxo-hexapyranosyl)-α-L-arabino-hexapyranoside

Parameter	Value					
Molecular Mass	886.1 g/mol	-9				
Formula	C ₄₉ H ₇₅ NO ₁₃					
Exact mass	885.52384 g/mol					
рКа	9,34 (methylamine group, basic; computed by Chemicalize)					
LogKow/logD	2.9 (pH range 0-4); 3,0 (pH5); 3.2 (pH6); 3.9 (pH7); 4,8 (pH8); 5,7 (pH9)	HO H				
Residue definition EU	Emamectin benzoate B1a, expressed as emamectin					
Approved in	BE, BG, CY, EL, ES, FR, HR, HU, IT, NL, PL, PT, RO, SI, SK; CZ in progres					
ADI / ARfD	ADI: 0.005 mg/kg bw per day / ARfD: 0.01 mg/kg bw					
Name: Gamma-Cyhalothrin (CAS: 767-03-62-3) IUPAC: (S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate or (S)-a-cyano-3-phenoxybenzyl (1R)-cis-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate						
Parameter	Value					
Molecular Mass	449.9 g/mol					
Formula	C ₂₃ H ₁₉ ClF ₃ NO ₃	F CI				
Exact mass	449.10055 g/mol	F P N O				
рКа	-	H Col				
LogKow	6.8					
Residue definition EU	Lambda-cyhalothrin (includes gamma-c	yhalothrin) (sum of R,S and S,R isomers) (F)				
Approved in	Gamma: AT, BE, BG, CZ, DE, DK, FR, HR, HU, IE, LT, PL, RO, SK Approved in Lambda: AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, P PT, RO, SI, SK, UK					
ADI / ARfD	ADI: 0.0012 mg/kg bw per day / ARfD: 0.0025 mg/kg bw					

Table 7: General information on substances amenable to the QuPPe extraction method

Name: Amitrole (CAS: 61 IUPAC: 1H-1,2,4-triazol-3-amine	-82-5						
Parameter	Value						
Molecular Mass	84.1 g/mol						
Formula	C ₂ H ₄ N ₄	N					
Exact mass	84.04359 g/mol	N, NH2					
рКа	3.5 (basic) computed by Chemicalize						
	-0.83 (pH2.5); -0.67 (pH3); -0.57 (pH4);	N H					
LOGKOW/IOgD	-0.56 (pH.4.5 onwards)						
Residue definition EU	Amitrole						
Approved in	Not Approved						
ADI / ARfD	ADI: 0.001 mg/kg bw per day / ARfD: 0.015 mg/kg bw						
Name: Diquat (CAS: 2764-72-9) IUPAC:9,10-dihydro-8a,10a-diazoniaphenanthrene or 6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazine-5,8-diium or 1,1'-ethylene-2,2'-bipyridyldiylium							
		I					
Molecular Mass	184.2 g/mol						
Formula	C ₁₂ H ₁₂ N ₂	NH NH					
Exact mass	184.1004 g/mol						
рКа	Estimated ~ 12 ⁹ (slightly acidic methylene hydrogen)						
LogKow/logD	-4,6 (Tomlin "The Pesticides Manual"))						
	-7 at any pH (computed by Chemicalize)						
Residue definition EU	Diquat						
	CY, CZ, DK, EL, FI, MT, PL, PT, RO, SE, SK, UK						
Approved In	Withdrawai authorisations by 4 May 2019.						
ADI / ARfD	ADI: $0.002 \text{ mg/kg bw per day / ABfD: } 0.01 \text{ mg/kg bw}$						
Name: PTU (CAS: 2122-19 IUPAC: 5-methyl-4,5-dihydro-1H-	-2) , degradant of probineb imidazole-2-thiol						
Parameter	Value						
Molecular Mass	116.2 g/mol						
Formula	C ₄ H ₈ N ₂ S	H					
Exact mass	116.04081 g/mol						
рКа	14,2 (very weakly acidic)	HS N CH3 S N CH					
	0.22 (pH-range of 1-12; computed by Chemicalize);	н н					
	-0.26 experimental						
Residue definition EU	Only regulated in baby food regulation						
PTU is approved in	Parent propineb is not registered any more						
ADI / ARfD	EU Database: ADI: 0.0003 mg/kg bw per day /ARfD 0.003	3 mg/kg bw					
	Peer review (2016) ¹⁰ : ADI: 0.002 mg/kg bw per day /ARf	0 0.012 mg/kg bw					
	וועראנצטט4): אטו: ט.טטא וווע/אץ שע per day / אאוט U.1 mg	vkR nm					

 ⁹ RREL Hazardous Waste Research Symposium (1993); T.F. Speth et al.; The removal of ionic contaminants from drinking water; page 153 ff
 ¹⁰ https://www.efsa.europa.eu/de/efsajournal/pub/4605

Parameter Value Molecular Mass 363.4 g/mol Formula CxHr,NjO,5 Exact mass 363.08898 g/mol AL0.6 (weakly acidic) BASF pKa 2.7 (acidic, NH of pyrazole group) Computed by -1.74 (basic, No f sozzale molety) Chemicalize $\psi_{ij}(F_{ij}) = 0.03$ (pH1): 1.3 (pH2): 1.4 (pH2.7): 1.0 Computed by -0.81@P144 ; -1.52@P14 7 ; BASF -2.34 @pH9 -0.33 (pH3): 0.0 (pH > 6.5) Chemicalize Approved In N. E.L ADI: 0.001 mg/kg bw per day / ARfD 0.001 mg/kg bw - - Molecular Mass 162.2 g/mol - - - Formula CupH1, N.3 (BH4): 1.3 (PH + 1.5) - - - Molecular Mass 162.2 g/mol - - - Parameter Value - - - - Molecular Mass 162.2 g/mol - - - - Molecular Mass 162.2 g/mol - - - - - - - - -	Name: Topramezone (IUPAC: [3-(4,5-dihydro-1,2-ox	CAS: 210631-(azol-3-yl)-4-mesy	5 8-8) /l-o-tolyl](5-hydro	oxy-1-methylpyrazol-	-4-yl)methanone	e			
Molecular Mass 363.4 g/mol Formula CutHixNo.05.5 Exact mass 363.0889 g/mol 4.06.0 (weakly acidic) BASF PKa 2.7 (acidic, NH of pyrazole group) Computed by 1.74 (basic, NA of isoxazole molety) Chemicalize 0.83.0 (pH1; 1.3, 2 (pH2); 1.4 (pH2.7); 1.0 Computed by (PH3) 7.3 (pH2); 1.3 (pH2); 1.4 (pH2.7); 1.0 Computed by Approved in NL. EL Chemicalize ADI / ARID ADI: 0.001 mg/kg bw per day / ARID 0.001 mg/kg bw Name: Nicotine (CAS: 54-115) VMARE: Nicotine (CAS: 54-115) UMAC: 31(28)-Insthylopyroldin 2-xil/pyrdine Parameter Value Value Molecular Mass 162.2 g/mol Formula Sci (Strongly basic at N of pyridine molety) All computed by pKa 8.6 (strongly basic at N of pyridine molety) pKa 8.6 (strongly basic at N of pyridine molety) pKa 8.6 (strongly basic at N of pyridine molety) pKa 8.6 (strongly basic at N of pyridine molety) pKa 8.6 (strongly basic at N of pyridine molety) pKa 8.6 (strongly basic at N of pyridine molety) pKa <td< th=""><th>Parameter</th><th>Value</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Parameter	Value							
Formula Cirk1:N0:OS Exact mass 363.08889 g/mol BASF pKa 2.7 (acidic, NH of pyrazole group) Computed by 1.74 (basic, N of isoxazole molety) Chemicalize Hot Step H4 : 1.52@pH 7 ; BASF 1.03 (pH1) : 1.3 (pH2) : 1.4 (pH2.7) : 1.0 Computed by Chemicalize Hot Step H4 : 1.52@pH 7 ; BASF 1.03 (pH1) : 1.3 (pH2) : 1.4 (pH2.7) : 1.0 Chemicalize Chemicalize Hot Step H4 : 1.52@pH 7 ; BASF Residue definition EU Topramezone (BAS 670H) Chemicalize Chemicalize Hot Step H4 : 1.52@pH 7 ; Chemicalize ADI / ARTD ADI: 0.001 mg/kg bw per day / ARTD 0.01 mg/kg bw Formula CcuH1:N2 Formula CcuH1:N2 VIACE 31(2b) 1-methyloprolidin 2-vi[pyridine Formula CcuH1:N2 Formula Formula	Molecular Mass	363.4 g/n	363.4 g/mol						
Exact mass 363.08889 g/mol pKa 2.7 (radic, MH of pyrazole group) Computed by Computed by 1.74 (basic, N of isoxazole molety) Computed by Chemicalize LogKow/logD -0.81@pH4; 1.15.2@pH 7; 0.33 (pH1); 1.3 (pH2); 1.4 (pH2.7); 1.0 (pH3); 0.35 (pH5); 0.0 (pH > 6.5) Chemicalize Residue definition EU Topramezone (BAS 670H) Approved in NL EL ADI / ARID ADI: 0.001 mg/kg bw per day / ARID 0.001 mg/kg bw Image: State of the state of	Formula	C ₁₆ H ₁₇ N ₃ C	C ₁₆ H ₁₇ N ₃ O ₅ S						
μ Ka $4.06 (weakly acidic)$ BASF $2.7 (acidic, NH of pyrazele group)$ $Computed by$ $V_1.74 (basic, N of lossize) en onicity) Computed by 1.74 (basic, N of lossize) en onicity) Computed by V_{1.74} (basic, N of lossize) en onicity) Computed by 0.31 @pH4 : 1.52@pH 7 ; 3.4 @pH 9 0.33 (pH1) : 1.3 (pH2) : 1.4 (pH2.7) : 1.0 Computed by V_{1.74} (basic, N of lossize) en onicity) Approved in NL EL ADI: 0.001 mg/kg bw per day / ARD 0.001 mg/kg bw V_{1.74} (basic, N of lossize) en onicity) Nume: Nicotine (CAS: 54-11-5) Urace 3 (12) is methylogradina.2 vijpyridine V_{2.12} (basic, methylogradina.2 vijpyridine Parameter Value Value V_{2.12} (basic, methylogradina.2 vijpyridine Residue definition EU V_{2.22} (pH4), 2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); Chemicalize V_{2.23} (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); Chemicalize Residue definition EU Nicotine Reg. (EU) 2015/401 (foresees MIMLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than cops 1.2 mg/kg; dired cops 2.3 mg/kg/secs; not an thome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 (confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data stamission deadine 19 October 2021) Approved in Not approved ADI: 0.0008$	Exact mass	363.0888	363.08889 g/mol						
pKa 2.7 (acidic, NH of pyrazole group) Computed by		4.06 (wea	1.06 (weakly acidic) BASF						
LogKow/logD 0.31@pH4 ; 1.52@pH 7 ; -2.34 @pH 9 BASF Image: Sign (PH) : -2.34 @pH 9 LogKow/logD 0.33 (pH1) : 1.3 (pH2) : 1.4 (pH2.7) : 1.0 Computed by (pH3): 0.35 (pH5) : 0.0 (pH > 6.5) Chemicalize Residue definition EU Topramezone (BAS 670H) Approved in NL EL AD/ ARTO ADI: 0.001 mg/kg bw per day / ARfD 0.001 mg/kg bw Image: Nicotine (CAS: 54-11-5) UVXC3 2(25) - methylgynoldin 2-xi]pyridine Image: Nicotine (CAS: 54-11-5) Image: Nicotine (CAS: 54-11-5) VIXC4 2(25) - methylgynoldin 2-xi]pyridine Image: Nicotine (CAS: 54-11-5) Image: Nicotine (CAS: 54-11-5) VIXC4 2(25) - methylgynoldin 2-xi]pyridine Image: Nicotine (CAS: 54-11-5) Image: Nicotine (CAS: 54-11-5) VIXC4 2(25) - methylgynoldin 2-xi]pyridine Image: Nicotine (CAS: 54-11-5) Image: Nicotine (CAS: 54-11-5) VIXC4 2(25) - Methyl 2-10 (PM Si 1.137 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.15 (PH 3): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.15 (PH 3): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.15 (PH 3): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 9): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 8): 1.3 (PH 6): -0.42 (PH 7); DAB (PH 8): 1.0 (PH 8): 1.3 (PH 6): -0.42 (PH 7); DAB (рКа	2.7 (acidio 1.74 (basi	c, NH of pyraz c, N of isoxaz	ole group) ole moiety)	Computed b Chemicalize	by e	HC N		™N
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	LogKow/logD	-0.81@p⊦ -2.34 @p 0.33 (pH1	I4 ; -1.52@p⊢ H 9): 1.3 (pH2):	I7; 1.4 (pH2.7): 1.0	BASF Computed b	bv	N: 0		
Residue definition EU Topramezone (BAS 670H) Approved in NL. EL ADI / ARID ADI: 0.001 mg/kg bw per day / ARID 0.001 mg/kg bw Name: Nicotine (CAS: 54-11-5) Interview (CAS: 54-11-5) Wink2: 3 {(25) 1-methylpyrotidine 2-ylpyridine If 2.2 g/mol Parameter Value Molecular Mass 162.2 g/mol Formula CgoH ₄ ,N ₂ Exact mass 162.11569 g/mol Jagk of (Strongly basic at N of pyridine molety) All computed by 8.6 (strongly basic N of pyrrolidine molety) All computed by LogKow/logD 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10), Residue definition EU Nicotine mg/kg: herbal infusions 0.5 mg/kg, sed spices and fruit spices 0.3 mg/kg; brat spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 conses spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 conse spices and bud spices 4 mg/kg). State 104 mg/kg bwd Approved in Not approved ADI / ARID ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Name: Cothine (CAS: 486-56-6) UVPAC: (SS)-1methyl-5 (grufin-3/Hg)yrrotidin-2 one Parameter Value Molecular Mass 176.2 g/mol Formula		(pH3); 0,3	(pH3): 0.35 (pH5): 0.0 (pH >6.5) Chemicalize						
Approved in NL. E L ADI / ARID ADI: 0.001 mg/kg bw per day / ARID 0.001 mg/kg bw Name: Nicotine (CAS: 54-11-5) UIPAC: 4](25)-1-methylpyrolidin-2/ulpyrdine Parameter Value Molecular Mass 162.2 g/mol Formula CudHaN2 Exact mass 162.11569 g/mol JEK Value LogKow/logD 2.32 (pH 4): -2.08 (pH 5): -1.37 (pH 6): -0.42 (pH 7); 0.48 (pH 8); 1,0 (pH 9); 1.15 (pH > 10). Residue definition EU Nicotine Nicotine reg/kg: herda linfusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; birdid uogi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg; teas 0. mg/kg; bed spices, root an mg/kg; bed spices, root an mg/kg; bed spices and fruit spices 0.3 mg/kg; berk spices, root an mg/kg; bed spices and fruit spices 0.3 mg/kg; berk spices, root an mg/kg; bed spices and fruit spices 0.3 mg/kg; berk spices, root an mg/kg; bed spices and fruit spices 0.3 mg/kg; berk spices, root an mg/kg; berk spices and fruit spices 0.3 mg/kg; berk spices, root an mg/kg; berk spicespic	Residue definition EU	Topramez	one (BAS 670)H)	1				
ADI / ARfD ADI: 0.001 mg/kg bw per day / ARfD 0.001 mg/kg bw Name: Nicotine (CAS: 54-11-5) UPAC: 3 (25) - Innethylpyrolidin-2 vjipyridine Parameter Value Molecular Mass 162.2 g/mol Formula C ₃₀ H ₄ N ₂ Exact mass 162.11569 g/mol J 2.7 (weakly basic at N of pyridine moiety) pKa All computed by LogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10). Chemicalize Residue definition EU Nicotine Reg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg; teas 0 mg/kg; (brd all infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; barks spices, root ang/kg; breved ang/kg; bw per day / ARfD: 0.0008 mg/kg bw Name: Cothine (CAS: 486-56-6) IUPAC: (S5)-1 methyl-5 (pyridin-2 one Parameter Value Molecular Mass 176.2 g/mol Formula C ₁₀ H ₁₂ N ₂ O Exact mass </td <td>Approved in</td> <td>NL. EL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Approved in	NL. EL							
Name: Nicotine (CAS: 54-11-5) UPAC: 3-(I25)-1-methylpyrolidin 2-y(I)pyridine Parameter Value Molecular Mass 162.2 g/mol Formula C10H1xN2 Exact mass 162.11569 g/mol pKa 2.7 (weakly basic at N of pyridine molety) 8.6 (strongly basic N of pyridine molety) All computed by LogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH > 10), Residue definition EU Nicotine Nicotine Reg. (EU) 2015/d01 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 3.3 mg/kg; bars 0, mg/kg; bars 10, mg/kg; herbal infusions 0.5 mg/kg, Reg. (EU) 2017/978 (applicable from 04/01/2011 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021) Approved in Not approved ADI / ARFD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Name: Cotinine (CAS: 486-56-6) UPAC: (Sb1-methyl-5/goridm-3-vlpyrrolidm-2-one Parameter Value Molecular Mass 176.2 g/mol Formula C ₁₀ H 15.5 0.17@pH 7.4 Computed by ACD Labs NagKog D 0.4@pH 5.5 0.17@pH 7.4 Computed by ACD Labs Residue definition EU Not approved Ali (ADI / ARfD	ADI: 0.00	1 mg/kg bw p	er day / ARfD 0.0)01 mg/kg bv	N			
Parameter Value Molecular Mass 162.2 g/mol Formula C ₁₀ H ₁₄ N ₂ Exact mass 162.11569 g/mol JKa 2.7 (weakly basic at N of pyridine moiety) 8.6 (strongly basic N of pyrrolidine moiety) JLogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10), Residue definition EU Nicotine Nicotine Reg. (LU) 2015/041 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizme spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Nameter Value Molecular Mass 176.2 g/mol Formula C1.0 ¹ H ₂ N ₂ O Exact mass 176.0 g/mol Formula C1.0 ¹ H ₂ N ₁ O Kat mass 176.2 g/mol Formula C1.0 ¹ H ₂ N ₁ O Kat mass 176.0 g/mol Kat mass 176.0 g/mol<	Name: Nicotine (CAS: 5 IUPAC: 3-[(2S)-1-methylpyrro	64-11-5) lidin-2-yl]pyridin	e						
Molecular Mass162.2 g/molFormula $C_{10}H_{14}N_2$ Exact mass162.11569 g/molpKa2.7 (weakly basic at N of pyrrolidine moiety) 8.6 (strongly basic N of pyrrolidine moiety) 0.48 (pH 8); 1.0 (pH 9); -1.37 (pH 6); -0.42 (pH 7); 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10),Residue definition EUNicotineReg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg; bark spices, not an mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg; bark spices and bud spices and fruit spices 0.3 mg/kg; bark spices, not an mg/kg; but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg; bark spices and bud spices a mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ned data submission deadline 19 October 2021)Approved inNot approvedADI / ARfDADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bwName: Cotinine (CAS: 486-56-6) UVPAC: (5:)-methyl-5-(pyridin-3-9)/pyrrolidin-2-oneParameterValueMolecular Mass176.2 g/molFormulaC1:@pH 5.5 0.1?@pH 7.4Computed by ACD Labs0.1@pH 5.5 0.1?@pH 7.4Residue definition EUnoneApproved inIts parent nicotine is not approvedADI / ARfDThe values of nicotine are typically used (see above)	Parameter	Value							
Formula $C_{10}H_{14}N_2$ Exact mass162.11569 g/molpKa2.7 (weakly basic at N of pyrridine moiety) 8.6 (strongly basic N of pyrroldine moiety) 0.48 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10),All computed by ChemicalizeResidue definition EUReg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungl 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teak 0 mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2018) confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021)Approved inNot approvedADI / ARfDADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bwMolecular Mass176.2 g/molFormula $C_{10}H_{12}N_2O$ Exact mass176.09496 g/molpKa $A.44@pH x_X$ LogKow/logD $0.1@pH 5.5 \\ 0.17@pH 7.4$ Computed by ACD Labs $h_3 C_{10} - C_{10} + C_{10} +$	Molecular Mass	162.2 g/mo	162.2 g/mol						
Exact mass 162.11569 g/mol pKa 2.7 (weakly basic at N of pyridine moiety) All computed by LogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); All computed by Chemicalize Chemicalize Chemicalize Residue definition EU Reg. (EU 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0. mg/kg; herd alinfusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU 2017/978 (applicable from 04/01/2018) confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Molecular Mass 176.2 g/mol Formula C10 ⁴ H ₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs Residue definition EU none Approved in Note sproved All computed for the values of nicotine is not approved H3G ADI / ARfD One	Formula	$C_{10}H_{14}N_2$							
pKa 2.7 (weakly basic at N of pyrrolidine moiety) All computed by LogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); All computed by 0.48 (pH 8); 1.0 (pH 9); 1.15 (pH >10), All computed by Chemicalize Residue definition EU Nicotine Reg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (bud dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0 mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2013 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission dealine 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Molecular Mass 176.2 g/mol Formula C1 ₀ /µ1 ₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs 0.1@pH 5.5 0.17@pH 7.4 Residue definition EU none Approved in Its parent nicotine is not approved AD / ARfD The values of nicotine are typically used (see above)	Exact mass	162.11569 §	L62.11569 g/mol						
Action (Strongly Dask N of pyrtoidine molety) All computed by LogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); Chemicalize CogKow/logD -2.32 (pH 4); -2.08 (pH 5); -1.37 (pH 6); -0.42 (pH 7); Chemicalize Residue definition EU Reg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0. mg/kg; berba infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2018 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ned data submission deadline 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Molecular Mass 176.2 g/mol Formula CioH12N20 Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine are typically used (see above)	рКа	2.7 (weakly	basic at N of	pyridine moiety)					
LogKow/logD 12.32 (pH 4), 2.03 (pH 3), 1.13 (pH 4), 0.042 (pH 7), 0.048 (pH 8); 1,0 (pH 9); 1.15 (pH >10), Residue definition EU Nicotine Reg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); tes 0. mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2013 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Molecular Mass 176.2 g/mol Formula C ₁₀ H ₁₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine are typically used (see above)		8.6 (strong)		yrrolidine molety	/) /2 (nH 7): (All con Chomi	nputed by		
Residue definition EU Nicotine Reg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0. mg/kg; kerbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2011 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (ne data submission deadline 19 October 2021) Approved in Not approved ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Nameter Value Molecular Mass 176.2 g/mol Formula C ₁₀ H ₁₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs Approved in Its parent nicotine is not approved Approved in The values of nicotine are typically used (see above)	LogKow/logD	-2.32 (pH 4)	1.0 (pH 9): 1.	, -1.37 (pri 0), -0 15 (pH >10).	.42 (pi 17), C	chenn	canze		
Approved inNot approvedADI / ARfDADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bwName: Cotinine (CAS: 48-56-6) TUPAC: (55)-1-methyl-5-(pyrrolidin-2-oneParameterValueMolecular Mass176.2 g/molFormulaC10 ⁰ H12N2OFormulaC10 ⁰ H2N2OpKa4.44@pH xxLogKow/logD0.1@pH 5.5 0.17@pH 7.4Residue definition EUnoneApproved inIts parent nicotine is not approvedADI / ARfDThe values of nicotine ar typically used (see above)	Residue definition EU	Nicotine	Nicotine Reg. (EU) 2015/401 foresees MRLs for herbs and edible flowers 0.4 mg/kg; wild fungi 0.0 mg/kg (but dry wild mushrooms other than ceps 1.2 mg/kg; dried ceps 2.3 mg/kg); teas 0. mg/kg; herbal infusions 0.5 mg/kg, seed spices and fruit spices 0.3 mg/kg; bark spices, root an rhizome spices and bud spices 4 mg/kg). Reg. (EU) 2017/978 (applicable from 04/01/2018 confirms and extends Residue definition and MRLs at least up to the next re-evaluation (new to be with the bar in the last in the spice).						wild fungi 0.04 g/kg); teas 0.6 pices, root and n 04/01/2018 valuation (new
ADI / ARfD ADI: 0.0008 mg/kg bw per day /ARfD: 0.0008 mg/kg bw Name: Cotinine (CAS: 486-56-6) IUPAC: (55)-1-methyl-5-(pyridin-3-yl)pyrolidin-2-one Parameter Value Molecular Mass 176.2 g/mol Formula C ₁₀ H ₁₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs is parent nicotine is not approved Approved in Its parent nicotine is not approved (see above)	Approved in	Not approve	ed						
Name: Cotinine (CAS: 486-56-6) IUPAC: (5S)-1-methyl-5-(pyridin-3-yl)pyrrolidin-2-one Parameter Value Molecular Mass 176.2 g/mol Formula C ₁₀ H ₁₂ N ₂ O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine are typically used (see above)	ADI / ARfD	ADI: 0.0008	mg/kg bw pe	r day /ARfD: 0.00	008 mg/kg bv	w			
ParameterValueMolecular Mass176.2 g/molFormulaC10H12N2OExact mass176.09496 g/molpKa4.44@pH xxLogKow/logD0.1@pH 5.5 0.17@pH 7.4Residue definition EUnoneApproved inIts parent nicotine is not approvedADI / ARfDThe values of nicotine art typically used (see above)	Name: Cotinine (CAS: 4 IUPAC: (5S)-1-methyl-5-(pyric	l86-56-6) lin-3-yl)pyrrolidir	I-2-one						
Molecular Mass176.2 g/molFormulaC10H12N2OExact mass176.09496 g/molpKa4.44@pH xxLogKow/logD0.1@pH 5.5 0.17@pH 7.4Residue definition EUnoneApproved inIts parent nicotine is not approvedADI / ARfDThe values of nicotine art typically used (see above)	Parameter	Value							
Formula C10H12N2O Exact mass 176.09496 g/mol pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine artypically used (see above)	Molecular Mass	176.2 g/mo	l						
Exact mass176.09496 g/molNpKa4.44@pH xxImage: Second secon	Formula	$C_{10}H_{12}N_2O$						H ³ С	-
pKa 4.44@pH xx LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine ar typically used (see above)	Exact mass	176.09496 §	g/mol				N-	Ň,	\checkmark°
LogKow/logD 0.1@pH 5.5 0.17@pH 7.4 Computed by ACD Labs Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine are typically used (see above)	рКа	4.44@pH xx	(s i					
Residue definition EU none Approved in Its parent nicotine is not approved ADI / ARfD The values of nicotine are typically used (see above)	LogKow/logD	0.1@pH 5.5 0.17@pH 7.	4	Computed by AC	D Labs		\		
Approved inIts parent nicotine is not approvedADI / ARfDThe values of nicotine are typically used (see above)	Residue definition EU	none							
ADI / ARfD The values of nicotine are typically used (see above)	Approved in	Its parent nicotine is not approved							
	ADI / ARfD	The values of	The values of nicotine are typically used (see above)						

EURL-SRM

0.0

Table 8: General information on substances amenable to the QuPPe extraction method that were analysed additionally and Ethoxyquin-Dimer (amenable to QuEChERS)

Name: Ethoxyquin-Dimer IUPAC: 6-ethoxy-1-(6-ethoxy-2,2	r (CAS: 74681-77-9) ;,4-trimethyl-1H-quinolin-8-yl)-2,2,4-trimethylquinoline					
Parameter	Value					
Molecular Mass	432.6 g/mol	CH ₃				
Formula	$C_{28}H_{36}N_2O_2$	- O_CH ₃				
Exact mass	432.28 g/mol	H ₃ C H CH ₃				
рКа	4.62 (computed by Chemicalize)					
LogP	6.22 (computed by Chemicalize)	H ₃ C O CH ₃				
Residue definition EU	MRLs: Previous: Reg. (EC) No 149/2008; Applicable: Reg. (EC) No 7	03/2014				
Approved in	Not approved (Ethoxyquin and metabolites)					
ADI / ARfD	ADI: 0.005 mg/kg bw per day; ARfD: 0.5 mg/kg bw per day					
Name: Trifluoroacetic aci IUPAC: Trifluoroacetic acid	d (CAS: 76-05-1)					
Parameter	Value					
Molecular Mass	114.02 g/mol					
Formula	C ₂ HF ₃ O ₂					
Exact mass	113.99 g/mol	F он				
рКа	0.95 (computed by Chemicalize)					
LogKow/logD	0.6 (pH1); -0.2(pH2); -1.1(pH3); -2 (pH4); -2.5 (pH5); -2.6 (pH6); 0.9 applies to pH<0 (computed by Chemicalize.com)	F O				
Residue definition EU	None					
Approved in	Metabolite and contaminant					
ADI / ARfD	ADI: 0.05 mg/kg bw per day					
Name: Chlorate (CAS: 14 IUPAC: Chlorate	866-68-3)					
Parameter	Value					
Molecular Mass	83.45 g/mol					
Formula	ClO ₃ -					
Exact mass	82.95 g/mol					
рКа	4.62 (computed by Chemicalize.com)					
LogKow/logD	0.03@pH3; -0.05@pH4 -0.48@pH5; -1.3@pH6; 0.041 applies to pH<3 (computed by Chemicalize.com)	0				
Residue definition EU	Reg. (EU) 2020/749, e.g. MRLs for leaf vegetables at 0.7 mg	/kg				
Approved in	Not approved					
ADI / ARfD	ADI: 0.01 mg/kg bw per day (WHO); ARfD: 0.036 mg/kg bw per day					

EURL-SRM

ADI / ARfD

Name: Perchlorate (CAS	: 14797-73-0)				
Parameter	Value				
Molecular Mass	99.45 g/mol				
Formula	ClO ₄ -	Q			
Exact mass	98.95 g/mol	o=ci=o			
рКа	-7.06 (computed by Chemicalize.com)				
LogKow/logD	-2.47 at pH 0 – 14 (computed by Chemicalize.com)	e			
Residue definition EU	Contaminant Reg. 1881/2006/EC: Current consolidated vers	sion from 14/10/2020			
Approved in	Not approved				
ADI / ARfD	TDI: 0.0003 mg/kg bw per day (EFSA CONTAM Panel)				
Name: Phosphonic acid	(CAS: 13598-36-2)				
IUPAC: Phosphonic acid					
Parameter	Value				
Molecular Mass	81.99 g/mol				
Formula	H ₃ PO ₃				
Exact mass	81.98 g/mol	но-р=о			
рКа	2.07; 8.54 (computed by Chemicalize.com)	I			
LogKow/logD	-2.4@pH3; -3.2@pH4; -3.6@pH5 (computed by Chemicalize.com)	ОН			
Residue definition EU	Fosetyl-Al (sum of fosetyl, phosphonic acid and their salts, e	Fosetyl-Al (sum of fosetyl, phosphonic acid and their salts, expressed as fosetyl)			
Approved in	AT, BE, BG, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IT, LT, LU, LV, MT, NL, PL, PT, RO, SE, SI, SK				
ADI / ARfD	ADI: 2.25 mg/kg bw per day				
Name: Thiocyanate (CA	5: 302-04-5)				
IUPAC: Cyanosulfanide					
Parameter	Value				
Molecular Mass	58.08 g/mol				
Formula	SCN ⁻				
Exact mass	57.98 g/mol				
рКа	0.5 (computed by Chemicalize.com)	5 C $-$ N			
	0 Feerly 0 Feerly 0 Feerly (computed by				
LogKow/logD	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by				
LOgKOW/IOgD	Chemicalize.com)				
LogKow/logD	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according t	o Art 18(1)(b) Reg 396 / 2005			
LogKow/IogD Residue definition EU	Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according t (according to EU-Pesticide database)	o Art 18(1)(b) Reg 396 / 2005.			
Residue definition EU	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate);	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in	 -0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level 	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/IogD Residue definition EU Approved in ADI / ARfD	 -0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1	 -0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) 	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter	 -0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) idinium dichloride Value 	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter Molecular Mass	 -0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) ridinium dichloride Value 257.16 g/mol 	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter Molecular Mass Formula	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) ridinium dichloride Value 257.16 g/mol C12H14Cl2N2	o Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter Molecular Mass Formula Exact mass	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) idinium dichloride Value 257.16 g/mol C ₁₂ H ₁₄ Cl ₂ N ₂ 256.05 g/mol	to Art 18(1)(b) Reg 396 / 2005.			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipyl Parameter Molecular Mass Formula Exact mass pKa	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) idinium dichloride Value 257.16 g/mol C ₁₂ H ₁₄ Cl ₂ N ₂ 256.05 g/mol None	to Art 18(1)(b) Reg 396 / 2005. 3C−N ⁺ −CH ₃			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter Molecular Mass Formula Exact mass pKa LogKow	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) ridinium dichloride Value 257.16 g/mol C12H14Cl2N2 256.05 g/mol None -6.7 at any pH (computed by Chemicalize.com)	to Art 18(1)(b) Reg 396 / 2005. $_{3}C - N + CH_{3}$			
LogKow/logD Residue definition EU Approved in ADI / ARfD Name: Paraquat (CAS: 1 IUPAC: 1,1'-Dimethyl-4,4'-bipy Parameter Molecular Mass Formula Exact mass pKa LogKow Residue definition EU	-0.5@pH2; -0.6@pH3; -0.6@pH4; (computed by Chemicalize.com) Potasium thiocyanate: No MRL required (Annex IV) Sodium thiocyanate: Default MRL of 0.01 mg/kg according to (according to EU-Pesticide database) Not approved (sodium and potassium thiocyanate); ammonium thiocyanate not yet assessed at EU level ? 910-42-5) idinium dichloride Value 257.16 g/mol C12H14Cl2N2 256.05 g/mol None -6.7 at any pH (computed by Chemicalize.com) Paraquat (MRLs at 0.02* for most products; 0.05* for teas, Applicable: Reg. (EC) No 520/2011	to Art 18(1)(b) Reg 396 / 2005. $_{3}C - N + CH_{3}$ spices; 0.05 for rice			

ADI: 0.004 mg/kg bw per day; ARfD: 0.005 mg/kg bw per day

Name: Melamine (CAS: IUPAC: 1,3,5-Triazine-2,4,6-tria	108-78-1) mine				
Parameter	Value				
Molecular Mass	126.12 g/mol				
Formula	C ₃ H ₆ N ₆	H ₂ N NH ₂			
Exact mass	126.06 g/mol				
рКа	basic: 2.84; 9.56 (computed by Chemicalize.com)	Ň			
LogKow/logD	-3.4@pH2; -2.8@pH3; -2.6@pH4; -2.6@pH5; - 1.2@pH9; (computed by Chemicalize.com)	NH ₂			
Residue definition EU	Metabolite of Cyromazine (not approved); Contaminant VO (EG) 1881/2006: Current consolidated version from 14/10/2020				
Approved in	Not approved but may also originate from fertilizers				
ADI / ARfD	TDI: 0.2 mg/kg bw per day				
Name: 1,2,4-Triazole ac IUPAC: 1H-1,2,4-Triazol-1-ylac	etic acid (CAS: 28711-29-7) etic acid				
Parameter	Value				
Molecular Mass	127.10 g/mol				
Formula	C ₄ H ₅ N ₃ O ₂	N			
Exact mass	127.04 g/mol				
рКа	acidic: 3.20 (carboxy-group) basic: 1.96 (triazole nitrogen) (computed by Chemicalize.com)				
LogKow/logD	-1.3@pH2; -1.3@pH3; -1.9@pH4; -2.8@pH5; (computed by Chemicalize.com)	UH			
Residue definition EU	None; metabolite of triazole fungicides				
	Not approved but several precursor compounds	are approved (triazole pesticides) may also			

Residue definition Eo	
Approved in	Not approved but several precursor compounds are approved (triazole pesticides), may also
	originate from various the use of 1,2,4-triazole in fertilizers.
ADI / ARfD	ADI: 1 mg/kg bw per day

Name: 1,2,4-Triazole lactic acid (CAS: 1450828-63-3) IUPAC: 1H-1,2,4-Triazol-1-yl-lactic acid

EURL-SRM 💕

Parameter	Value			
Molecular Mass	157.13 g/mol			
Formula	$C_5H_7N_3O_3$	N		
Exact mass	157.05 g/mol			
рКа	acidic: 3.14 (carboxy group); 13.7 (hydroxyl group); basic: 2.03 (nitrogen in triazole moiety) (computed by Chemicalize.com)			
LogKow/logD	-1.8@pH2; -1.8@pH3; -2.4@pH4; -3.4@pH5; (computed by Chemicalize.com)	HO		
Residue definition EU	None; metabolite of triazole fungicides			
Approved in	Not approved but several precursor compounds are approved (triazole pesticides), may also originate from various the use of 1,2,4-triazole in fertilizers.			
ADI / ARfD	ADI: 0.3 mg/kg bw per day			

Name: 1,2,4-Triazol-1yl IUPAC: 3-(1H-1,2,4-Triazol-1-y	-alanine (CAS: 10109-05-4) I)alanine				
Parameter	Value				
Molecular Mass	156.143 g/mol				
Formula	C ₅ H ₈ N ₄ O ₂	N			
Exact mass	156.06 g/mol	N			
	acidic: 1.08; 7.90;	H ₂ N—(*			
рКа	basic: 2.44; 11.28				
	(computed by Chemicalize.com)				
LogKow/logD	-3.9@pH2; -3.5@pH 3 - 7	НО			
LOGKOW/IOGD	(computed by Chemicalize.com)				
Residue definition EU	None; metabolite of triazole fungicides				
Approved in	Not approved but several precursor compounds are approved (triazole pesticides), may also				
Approved m	originate from various the use of 1,2,4-triazole in fertilizers.				
ADI / ARfD	ADI: 0.3 mg/kg bw per day				
Name: Cyanuric acid (C	AS: 108-80-5)				
IUPAC: 1,3,5-triazine-2,4,6-tria					
Parameter	Value				
Molecular Mass	129.075 g/mol				
Formula	C ₃ H ₃ N ₃ O ₃	HO			
Exact mass	129.0174 g/mol				
al/a	acidic: 5.55; 8.77; 12.27	N			
рка	(computed by Chemicalize.com)	Ĭ			
LogKow/logD	0.98 @pH<12	о́н			
LOBKOW/IOBD	(computed by Chemicalize.com)				
Residue definition EU	Metabolite and hydrolysis product of melamine and	d chloroisocyanurates			
Approved in	Not approved but some precursor compounds are a	Not approved but some precursor compounds are approved (triazine pesticides), also originating			
Approved III	from various other sources, such as from fertilizers and sanitizers				
ADI / ARfD	TDI: 1.5 mg/kg bw per day (WHO 2008)				

3. Materials

 Table 9: Sources of analytical standards-updated

Substance	Purity	CAS	Sources (exemplary)
Avermectin B1a	97.76	65195-55-3	Toronto Research Chemicals
Emamectin B1a (solution; 100 μg/mL)	-	121124-29-6	НРС
3-Hydroxycarbofuran	97.16	16655-82-6	Dr. Ehrenstorfer
γ-Cyhalothrin	98.5	767-03-62-3	Dr. Ehrenstorfer
Fentin-hydroxide	99.0	76-87-9	Dr. Ehrenstorfer
Haloxyfop	99.9	69806-34-4	НРС
Diclofop	98.0	40843-25-2	Dr. Ehrenstorfer
Amitrole	98.0	61-82-5	Dr. Ehrenstorfer
Nicotine	99.5	54-11-5	Dr. Ehrenstorfer
Cotinine	98.0	486-56-6	Sigma-Aldrich
РТИ	97.0	2122-19-2	Dr. Ehrenstorfer
Diquat dibromide monohydrate	100.0	6385-62-2	Sigma-Aldrich
Topramezone	100.0	210631-68-8	Dr. Ehrenstorfer
Propyzamide D₃	99.0	1219805-79-4	CDN Isotopes
Chlorpyrifos D ₁₀	95.21	285138-81-0	Dr. Ehrenstorfer
Fentin D ₁₅	98.0	358731-94-9	CDN Isotopes
Amitrole ¹⁵ N ₂ ¹³ C ₂	97.0	1346603-92-6	Toronto Research Chemicals
Nicotine D ₄	99.1	350818-69-8	Dr. Ehrenstorfer
Cotinine D ₃	99.9	110952-70-0	Dr. Ehrenstorfer
PTU (N,N'-(1,2-Propylene)-thiourea) D ₆	98.0	-	Toronto Research Chemicals
Diquat D ₈ dibromide	99 atom %D	-	CDN Isotopes
MPPA D ₃	96.0	15090-23-0	Toronto Research Chemicals
Ethoxyquin-Dimer	99.2	74681-77-9	НРС
Trifluoro acetic acid	99.0	76-05-1	Fluka
Chlorate-Sodium	99	7775-09-9	Sigma-Aldrich
Perchlorate-Sodium	98	7601-89-0	Sigma-Aldrich
Phosphonic acid	99	13598-36-2	Sigma-Aldrich
Thiocyanate-Sodium	99.99	540-72-7	Sigma-Aldrich
Paraquat-dichloride hydrate	99.9	75365-73-0	НРС
Melamine	99	108-78-1	Sigma-Aldrich
1,2,4-Triazole acetic acid	97	28711-29-7	Dr. Ehrenstorfer
1,2,4-Triazole lactic acid	98	1450828-63-3	Bayer CropScience
1,2,4-Triazole-1yl-alanine	98,6	4819-36-7	Bayer CropScience
1,2,4-Triazole lactic acid (2-Hydroxy-3-(1H-1,2,4-triazol-1-yl)- propionic acid) *	-	1450828-63-3	Sigma-Aldrich
1,2,4-Triazole-1yl-alanine*	-	10109-05-4	Sigma-Aldrich
Cyanuric acid	99	108-80-5	Dr. Ehrenstorfer
Trifluoro acetic acid ¹³ C ₂	97,0	-	Toronto Research Chemicals
Chlorate ¹⁸ O ₃	. 0001	Mixture	EURL-SRM
Perchlorate ¹⁸ O ₄	>98%	Perchlorate ¹⁸ O ₄	EURL-SRM

Substance	Purity	CAS	Sources (exemplary)
Phosphonic acid ¹⁸ O ₃	>98%		EURL-SRM
Thiocyanate-Potassium ¹³ C ¹⁵ N	99,4	143673-61-4	Sigma-Aldrich
Paraquat D ₈ –dichloride	100	-	Sigma-Aldrich
Melamine ¹⁵ N ₃	98	-	НРС
1,2,4-Triazole acetic acid ¹³ C ₂ ¹⁵ N	98	-	Bayer CropScience
1,2,4-Triazole lactic acid ¹³ C ₂ ¹⁵ N	98	-	Bayer CropScience
1,2,4-Triazole-1yl-alanine ¹³ C ₂ ¹⁵ N	92,2	-	Bayer CropScience
1,2,4-Triazole acetic acid D_2^*	96	2409015-22-9	Reseachem
1,2,4-Triazole lactic acid D ₂ *	99	2409015-17-2	Reseachem
1,2,4-Triazole-1yl-alanine D ₂ *	95	2180306-38-9	Reseachem
Cyanuric acid ¹³ C ₃	99,8	201996-37-4	НРС

Disclaimer: Names of companies are given for the convenience of the reader and do not indicate any preference by the EURL-SRM towards these companies and their products

*Recently available are also D₂ analogons.

All other materials and chemicals used as listed in EN 15662, the $QuPPe-PO^{11}$ or the $QuPPE AO^{12}$ method.

¹¹ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe_PO_V11_1.pdf

¹² https://www.eurl-pesticides.eu/userfiles/file/meth_QuPPe_AO_V3_2.pdf

4. Extraction and Instrument Methods

4.1. Extraction Methods

EURL-SRM

4.1.1. QuEChERS

Two methods, the QuEChERS method (EN 15662) without clean-up and the acidified-QuEChERS method (A-QuEChERS) were tested. The analytical portion used was 2 g in each case. For cow's milk and ready-to-use products the analytical portion used was 10 g. The general analytical procedure at a glance is shown in **Figure 1**.

4.1.1.1. Apparatus and Consumables

Refer to EN 15662.

4.1.1.2. QuEChERS (EN 15662)

The procedure as described in EN 15662 was followed using 2 g infant formula powder and 10 g milk or ready-to-use product as analytical portion. The first extraction step involved 15 min shaking by a mechanical shaker. No clean-up was conducted for LC-MS/MS applications.

4.1.1.3. Acidified-QuEChERS (A-QuEChERS)

The method corresponds to EN 15662, but instead of pure acetonitrile 10 mL acetonitrile containing 1% formic acid are employed for extraction. Partitioning is induced by the addition of 4 g MgSO₄ + 1 g NaCl (no citrate buffer salts). The first extraction step involved 15 min shaking by a mechanical shaker. No clean-up was conducted for LC-MS/MS applications.

Weigh sample into 50 mL centrifuge tube

Infant formulae powder: 2 g \pm 0,02 g (Ready-to-use and milk: 10 g \pm 0.1 g)

Add ISs

e.g. Fentin-D₁₅, Haloxyfop-D₄, Nicarbazin or Propyzamid-D₃

Adjust water content to 10 mL

Infant formulae powder: + 10 mL

(Whole fat cow's milk and Ready-to-use formula: No addition)

Add 10 mL ACN containing 1% formic acid

Shake thoroughly for 15 min

Add 4 g MgSO₄ and 1 g NaCl

Shake for 1 min, allow vials to cool down and centrifuge (e.g. at 4000 g for 5 min)

Cleanup (optional for LC)

a) dSPE (6 mL extract with 0.9 g MgSO₄ + 150 mg C_{18} -sorbent) OR b) freeze-out

GC-MS/MS analysis (not performed) LC-MS/MS analysis (ESI-Neg. + ESI-Pos.)

Figure 1: Method at a glance Acidified QuEChERS.

JRL-SRM

4.1.2. <u>QuPPe AO</u>

JRL-SRM

For the analysis of the QuPPe amenable analytes within the scope of the pilot monitoring, the QuPPe AO method is used with the analytical portion being 2 g of infant formula powder and 10 g of milk or ready-to-use products. All consumables and chemicals used are listed in QuPPe PO¹³ or QuPPe AO¹⁴ protocols. The general analytical procedure at a glance is shown in **Figure 2**.

4.1.2.1. Weighing of analytical portions

Weigh a representative analytical portion (m_a) of the sample homogenate into a 50 mL centrifuge tube. In case of infant formula powder weigh 2 g \pm 0.02 g of the homogenized sample. In case of ready-to-use liquid infant formula products and cow's milk weigh 10 g \pm 0.1 g.

4.1.2.2. Adjustment of water content

Add water to the vial containing the analytical portion (4.1.2.1), to reach 10 g in total. The amount of water to be added to the analytical portion is shown in Table 10.

Commodity	Sample weight (m _a)	Typical natural water content in g/100 g	Water to be added	Vol. of 10% EDTA sln	Water addition may be skipped*	IS-WSIn added e.g.	Extra Formic acid	Extraction Solvent
Infant formula powder	2 g	-	9 mL	1 mL	No	100 µL	100 µL	
Infant formula ready-to-use liquid product	10 g	85 - 87	-	1 mL	Yes	100 µL	100 µL	10 mL MeOH containing 1% Formic acid
Whole fat cow's milk	10 g	85	0.5 mL	1 mL	Yes	100 µL	100 µL	(FA)

Table 10: Adjustment of water content for infant formula

* The ILIS will typically correct for volume deviations. In case no ILIS is used, volume adjustments become more important

4.1.2.3. Extraction

Add 10 mL acidified methanol and an appropriate small volume (e.g. 100 μ l) of the internal standard working (IS-WSIn) containing isotopically labelled analogues of the analytes of tube and shake for a few seconds to distribute the acid and allow the proteins to coagulate. Add 1 mL of 10% aqueous EDTA solution (preparation see QuPPe-document) and shake either for 1 min by hand or for 15 min by a mechanical shaker.

¹³ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe_PO_V11_1.pdf

¹⁴ https://www.eurl-pesticides.eu/userfiles/file/meth_QuPPe_AO_V3_2.pdf

4.1.2.4. Freeze-Out and Centrifugation

JRL-SRM

Depending on the available centrifugation equipment there is various options, e.g.:

- (1) Centrifugation following freeze-out: Place the tubes with the extracts from 4.1.1.3 into a freezer (e.g. at ca. -80 °C for 30 min or for > 90 min at ca. -20 °C) and centrifuge them while still cold for 5 min at ≥3,000 g. Higher centrifugation forces (e.g. ≥10,000 g) and the use of a refrigerated centrifuge are preferable.
- (2) Refrigerated high-speed centrifugation: Centrifuge the extracts 4.1.1.3 for ≥20 min at high centrifugation speed (e.g. >10,000 g) and low temperatures (e.g. lower than -5 °C). Centrifugation time may be reduced to 5 min if the extract is pre-frozen.

The centrifuged extracts needs **to be separated while still cold** to avoid that matrix-components, which had precipitated in the cold, will redissolve.

4.1.2.5. Removal of Lipids and Protein Precipitation

Transfer a 2 mL aliquot of the supernatant from **4.1.2.4** into a 10 mL centrifuge tube with screw cap, which already contains 2 mL of acetonitrile and 100 mg of C_{18} -sorbent and shake for 1 min. Then centrifuge for 5 minutes at >3,000 g.

4.1.2.6. Filtration

Transfer a 3 mL aliquot of the supernatant from **4.1.2.5** into an ultrafiltration unit and centrifuge at 3,000 g until enough filtrate is accumulated in the reservoir (5 min are typically enough). Transfer an aliquot of the filtrate into an autosampler vial.

Figure 2: Method at a glance QuPPe AO for infant formula

4.2. Instrumentation Methods

JRL-SRM

In Table 11 an overview of the LC-MS/MS methods used for the analysis of the analytes within the scope is given. Detailed conditions are shown in the following tables.

Analyte	Internal Standard	Instru- mental Method	Analytical Column	MS mode
Avermectin B1a				
Emamectin B1a	Pronyzamide Da	Method 1	Acquity LIPLC BEH C10	MS/MS ESI(+)
3-Hydroxy-carbofuran		Method 1		
Ethoxyquin-Dimer				
Gamma-Cyhalothrin	Chlorpyrifos D ₁₀	Method 2	ChiralArt Cellulose-SB	MS/MS ESI(+)
Fentin	If CEN QuEChERS is used Fentin D_{15} will help to correct for recovery. With FA- QuEChERS Propyzamide D_3 is also suitable	Method 3	Zorbax 3,5 μm; Eclipse XDB-C ₁₈	MS/MS ESI(+)
Haloxyfop	Propuzamido D	Mathad 4		
Diclofop (free acid)		wethou 4	Acquity OPEC BER C18	IVIS/IVIS ESI(-)
Amitrole	Amitrole ¹⁵ N ₂ ¹³ C ₂			
Nicotine	Nicotine D ₄		BEH Amide	MS/MS ESI(+)
Cotinine	Cotinine D₃	Method 5 ^A		
PTU	PTU D ₆			
Melamine	Melamine ¹⁵ N ₃			
Diquat	Diquat D ₈	Mathad 6B	Obolice P	MS/MS ESI(+)
Paraquat	Paraquat D ₈		Obelise K	
Topramezone	MPPA D_3^H /Propyzamide D_3	Method 7 ^c	Waters Torus™DEA	MS/MS ESI(-)
Trifluoroacetic acid	Trifluoro acetic acid ¹³ C ₂	Method 8 ^D	AS19	IC-MS/MS ESI(-)
Chlorate	Chlorate ¹⁸ O ₃			
Perchlorate	Perchlorate ¹⁸ O ₄	Mathad QE	Hyporcarb	NAC/NAC ECI()
Phosphonic acid	Phosphonic acid ¹⁸ O ₃	wiethou 9-	пурегсаго	
Thiocyanate	Thiocyanate-Potassium ¹³ C ¹⁵ N			
Triazole acetic acid	1,2,4-Triazole acetic acid ${}^{13}C_2 {}^{15}N$ also D ₂			
Triazole lactic acid	1,2,4-Triazole lactic acid ${}^{13}C_2$ ${}^{15}N$ also D ₂	Method 10 ^F	Waters Torus™DEA	MS/MS ESI(+)
Triazole alanine	1,2,4-Triazole-1yl-alanine ${}^{13}C_2 {}^{15}N$ also D ₂			
Cyanuric acid	Cyanuric acid ¹³ C ₃	Method 11 ^G	Hypercarb	MS/MS ESI(-)

Table 11: Overview of all analytes within the scope and the used LC-MS/MS methods

^Asee QuPPe PO: Method 4.2 (M 4.2): "Quats & Co BEH Amide"¹⁵

^Bsee QuPPe PO: Method 4.1 (M 4.1): "Quats & Co Obelisc R"¹⁵

^csee QuPPe PO: Method 1.6 (M 1.6): "Glyphosate & Co. on Torus DEA"¹⁵

^Dsee QuPPe PO: Method (M 11): "Anionic Pesticides with Ion Chromatography"¹⁵

^Esee QuPPe PO: Method (M 1.4): "PerChloPhos"¹⁵

^Fsee QuPPe PO: Method (M 10): "Triazole derivative metabolites (TDMs) on Torus DEA"¹⁵

^Gsee QuPPe PO: Method (M 1.3): "Glyphosate & Co.Hypercarb"¹⁵

^H Please read important note on MPPA D3 under **Table 20**

¹⁵ https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

LC	Agilent Infinity				
MS/MS	Sciex 5500QTrap, run in ESI positive mode				
Column	Acquity UPLC BEH C ₁₈ 1.7μm 2.1 x 100 mm Column				
Pre-column	Van Guard BEH C ₁₈ 1.7µm				
Mobile Phase	A: 5 mmol NH ₄ -Formiate in Water + 5 % Methanol				
	B: 5 mmol NH ₄ -Formiate in Methanol				
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	60	0.4		
	10	10	0.4		
	13	10	0.4		
	13.1	60	0.4		
	19	60	0.4		
Injection volume	2 μL				
Column temperature	40°C				
Internal Standard	Propyzamide D ₃				
Aquired mass transitions					
Propyzamide D ₃	259/193				
Avermentin P12 [M+NH] ⁺	891/305 T				
	891/567				
Emomostin P1a	887/82 T				
	887/158				
	238/163 T				
3-Hydroxycarbofuran	238/181				
	238/220				
	433/216 T				
Ethoxyquin-Dimer	433/188				
	433/375				

Table 12: Instrumentation details on Method 1

EURL-SRM

Table 13: Instrumentation details on Method 2¹⁶

LC	Waters I-Class				
MS/MS	Sciex 5500QTrap, run in ESI positive mode				
Column	ChiralArt Cellulose-SB 100x4.6mm, 3µm				
Pre-column	-				
Mobile Phase	A: 5 mmol NH ₄ -Formiat	e in Water + 5 % Methanol			
	B: 5 mmol NH ₄ -Formiat	e in Methanol			
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	Initial	20	0.6		
	15	20	0.6		
Injection volume	5 μL				
Column temperature	35°C				
Internal Standard	Chlorpyrifos D ₁₀				
Aquired mass transitions					
Chlorpyrifos D ₁₀	360/199				
Gamma-Cyhalothrin	467/225 T				
Gamma-Cynaiotinni	467/450				

¹⁶ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observation_Cyhalothrin_V1.pdf

Table 14: Instrumentation details on Method 3

EURL-SRM

LC	Agilent Infinity				
MS/MS	Sciex 6500QTrap, run in ESI positive mode				
Column	Zorbax 3,5 μm; Eclipse XDB-	C ₁₈ ; 2,1x 50 mm			
Pre-column	C18 ODS 4mm x 2mm ID (Phe	enomenex AJO-4286)			
Mobile Phase	A: 5 mmol NH ₄ -Formiate in N B: 5 mmol NH ₄ -Formiate in N	A: 5 mmol NH ₄ -Formiate in Water + 1 % Formic acid B: 5 mmol NH ₄ -Formiate in Methanol + 1 % Formic acid			
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	60	0.4		
	2	0	0.4		
	7	0	0.4		
	7.1	60	0.4		
	11	60	0.4		
Injection volume	1 μL				
Column temperature	40°C				
Internal Standard	Fentin D ₁₅ ; Propyzamide D ₃	when employing A-QuEChERS			
Aquired mass transitions					
Fentin D ₁₅	366/120	366/120			
Propyzamide D ₃	259/193				
	351/120 T				
Fentin	351/197				
	349/195				

Table 15: Instrumentation details on Method 4

LC	Agilent Infinity	Agilent Infinity			
MS/MS	Sciex 5500QTrap, run in I	SI negative mode			
Column	Acquity UPLC BEH C ₁₈ 1.7µn	n 2.1 x 100 mm Column			
Pre-column	Van Guard BEH C ₁₈ 1.7µm				
Mobile Phase	A: 0.01 % acetic acid in Water + 5 % Acetonitrile				
	B: 0.01 % acetic acid in Acete	pnitrile			
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	80	0.4		
	4	70	0.4		
	7	10	0.4		
	8.5	10	0.4		
	8.6	80	0.4		
	13.5	80	0.4		
Injection volume	2 μL				
Column temperature	40°C				
Internal Standard	Propyzamide D ₃				
Aquired mass transitions					
Propyzamide D₃	257/231				
	360/288 T				
Haloxyfop	362/290				
	360/196				
	325/253 T				
Diclofop (free acid)	325/255				
	325/145				

Table 16: Instrumentation details on Method 5 (corresponds to Method 4.2 (M 4.2): "Quats & Co BEH Amide"; see QuPPe PO¹⁷)

LC	Waters I-Class					
MS/MS	Sciex 5500QTrap, run in I	SI positive mode				
Column	BEH Amide 2.1 x 100mm 1.7	μm				
Pre-column	BEH Amide 1.7 μm					
Pre-filters	e.g. waters column inline filter 2 μm					
Mobile Phase	A: 50 mmol NH_4 -Formiate in Water (adjusted to pH 3 with formic acid)					
	B: Acetonitrile					
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)			
	0	3	0.5			
	0.5	3	0.5			
	4	30	0.5			
	5	60	0.5			
	6	60	0.5			
	6.1	3	0.5			
	10	3	0.5			
Injection volume	2 μL					
Column temperature	40°C					
Aquired mass transitions						
	85/43 T					
Amitrole	85/58					
	85/57					
Amitrole ¹⁵ N ₂ ¹³ C ₂	89/44					
	163/130 T					
Nicotine	163/132					
	163/84					
Nicotine D ₄	167/84					
Catinina	177/80 T					
Cotinine	177/98					
Cotinine D ₃	180/80					
	117/60 T					
PTU	117/58					
	117/72					
PTU D ₆	123/64					
	127/85 T					
Melamine	127/68					
	127/60					
Melamine ¹⁵ N ₃	130/87					

¹⁷ https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

Table 17: Instrumentation details on Method 6 (corresponds to Method 4.1 (M 4.1): "Quats & Co Obelisc R"; see QuPPe PO¹⁸)

LC	Waters I-Class	Waters I-Class			
MS/MS	Sciex 5500QTrap, run in ESI po	sitive mode			
Column	Obelisc R 2.1 x 150 mm 5 µm 100 Å	Obelisc R 2.1 x 150 mm 5 μm 100 Å			
Pre-column	Obelisc R 2.1 x 10 mm 5 μm				
Pre-filters	e.g. Supelco column saver 2 μm Fil	ter			
Mobile Phase	A: 50 mmol NH ₄ -Formiate in Water	r (adjusted to pH 3 with formic a	cid)		
	B: Acetonitrile				
Gradient	Time (min) Mobile Phase A (%) Flow (mL/min)				
	0	20	0.4		
	3	80	0.4		
	8	80	0.4		
	8.1	20	0.4		
	14	20	0.4		
Injection volume	10 μL				
Column temp.	40°C				
Aquired mass transi	tions				
Diquat De	See Table 19;				
	mind to use MRMs corresponding	to those of the native analyte (s	ee below)		
Diquat	See Table 19.				
	186/171				
Paraquat	93/171 T				
	93/77				
	194/179				
Paraquat D ₈	97/179 T				
	mind to use MRMs corresponding	to those of the native analyte (s	ee below)		

Table 18: Exemplary matrix effects of Diquat in infant formula powder extract, considering mass transitions resulting from different parents (Diquat conc. in the final extract: $0.015 \ \mu g/mL$)

Australia	Type of	Native co	mpound	Corresponding ILIS D ₈		
Analyte	parent ion	MRM (m/z)	Matrix effect (%)	MRM (m/z)	Matrix effect (%)	
	[M] ²⁺	92/84	+57	96/88	+54	
Diquat	[M ²⁺ - H ⁺] ⁺	183/157	-92	191/165	-91	
	[M] ^{+•}	184/128	-91	192/134	-93	

¹⁸ https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

Table 19: Individual transitions and MS/MS settings (Sciex API 5500) for Diquat and its respective ILIS on Sciex 5500 QTrap ESI(+). Transitions are grouped by parent type.

JRL-SRM

Parent ion Q1 [m/z]	Daughter ion Q1 [m/z]	Suitable ILIS transition	Sensitivity Ranking*	DP (V)	CE (V)	CXP (V)
	84.4		1	61	21	4
Discust [14]2+ 02	157	er ion Q1 $1/2$ Suitable LLS transitionSensitivity Ranking*DP (V)CE (V)CXP (V)4.416121457ILLS Diquat Da $[M]^{2+}$ 96/88561191230 $[M]^{2+}$ 96/8876125857 $[M]^{2+}$ 96/8876125857 $ILLS$ Diquat Da $[M]^{2+}$ 191/165716143868 $[M]^{2+}$ 191/1659161371078191/16591615112.28 $[M]^{++}$ 191/165360558.06 $[M]^{++}$ 5606512.55 $[M]^{++}$ 4602910.69192/1345604312.55.56.55604512.685604512.685.604512.685.604512.63.5.60.4512.64.5.60.4512.65.60.55.60.61.61.65.7.61.61.61.61.65.7.61.65.55.8	12			
Diquat [ivi] ^{-,} 92	78	96/88	8	61	31	12
	130		7	itivity king*DP (V)CE (V)CXP1 61 21 4 5 61 19 1 8 61 31 1 7 61 25 8 2 161 31 1 7 161 43 8 6 161 37 1 9 161 51 1 3 60 55 8 5 60 23 8 5 60 29 1 5 60 27 1 5 60 43 1 5 60 43 1 5 60 43 1 5 60 43 1 5 60 45 1 61 21 4 101 31 1	8	
	157	Suitable ICIS transition Sensitivity Ranking* DP (V) CE (V) CXP (V) ILIS Diquat D8 [M] ²⁺ 1 61 21 4 JUIS Diquat D8 [M] ²⁺ 5 61 19 12 96/88 61 31 12 8 7 61 25 8 1 7 61 31 10 1 96/88 7 161 31 10 ILIS Diquat D8 [M ²⁺⁻ H ⁺] ⁺ 7 161 43 8 191/165 9 161 37 10 9 161 51 12 192/134 5 60 23 8 192/134 5 60 29 10 192/134 5 60 27 12 5 60 43 12 5 60 45 12 6 61 21 4 - 61 31 10				
Diquat [M ²⁺ - H ⁺] ⁺ 183	130	ILIS Diquat D ₈	7	161	43	8
Diquat [ivi-' - H']' 105	168 191/165 6 161 37	37	10			
	78	191/103	9	161	P (V) CE (V) CXP (V) 61 21 4 61 19 12 61 31 12 61 25 8 161 31 10 161 31 10 161 37 10 161 51 12 60 55 8 60 65 12 60 23 8 60 23 10 60 23 12 60 23 12 60 29 10 60 27 12 60 43 12 60 45 12 61 21 4 101 31 10	12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128		3	60	55	8
	23	8				
	[m/z] transition Ranking* DP (V) CE (V) CAP(V) 84.4	ILIS Diquat D ₈	12			
Diquat [M] ** 184	156	[M] +•	Sensitivity Ranking* DP (V) CE (V) CXP (V) 1 61 21 4 5 61 19 12 8 61 31 12 7 61 25 8 2 161 31 10 7 61 25 8 2 161 31 10 7 61 25 8 2 161 31 10 7 161 43 8 6 161 37 10 9 161 51 12 9 161 51 12 3 60 23 8 5 60 27 12 4 60 29 10 5 60 43 12 5 60 45 12 5 60 45 12 5 61	[M] ^{+•} 4 60 29	10	
	169	192/134	5	60	27	12
	155		5	60	43	12
	168		5	60	45	12
ILIS Diquat D ₈ [M] ²⁺ 96	88,4	-		61	21	4
ILIS Diquat D ₈ [M ²⁺⁻ H ⁺] ⁺ 191	165	-		101	31	10
ILIS Diquat D ₈ [M] ^{+•} 192	134	-		156	55	8

* The ranking in this table only refers to the signal to noise ratio. Further experiments are planned to study signal repeatability of various mass transitions also in comparison with the transitions of the respective ILIS.

Table 20: Instrumentation details on Method 7 (corresponds to Method 1.6 (M 1.6): "Glyphosate & Co. on Torus DEA"; see QuPPe PO¹⁹)

LC	Waters I-Class				
MS/MS	Sciex 5500QTrap, run in ESI	negative mode			
Column	Waters Torus [™] DEA 2.1 mm	x 100 mm; 1.7 μm			
Pre-column	Vaters Torus™DEA VanGuard™ 2.1 mm x 5 mm; 1.7 μm				
Pre-filters	Waters ACQUITY UPLC Colur	nn In-Line Filter Kit			
Mobile Phase	A: 1.2% formic acid in Water				
	B: 0.5% formic acid in Acetor	nitrile			
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	10	0.5		
	0.5	10	0.5		
	1.5	80	0.5		
	4.5	90	0.5		
	17.5	90	0.5		
	17.6	10	0.5		
	23	10	0.5		
Injection volume	10 μL				
Column temperature	50°C				
Aquired mass transitions					
	362/334 T				
Topramezone	362/318				
	362/194				
MPPA D ₃ *	154/136				

* <u>IMPORTANT NOTE</u>: Be aware, that the use of ISs other than the isotope labelled analogues of the analytes can introduce significant errors if there are significant differences in the matrix effects between sample and calibration solution. In absence of topramezone ILIS MPPA D₃ was tested as it typically shows little matrix effects. It merely served for correcting for volume deviations, as marix effects were largely compensated by matrix-matched calibrations.

¹⁹ https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

Table 21: Instrumentation details on Method 8 (corresponds to Method M 11: "Anionic Pesticides with Ion Chromatography", see QuPPe PO^{20; 21}

EURL-SRM

IC	Thermo Scientific Integrie	Thermo Scientific Integrion			
MS/MS	Sciex 5500QTrap, run in E	ESI negative mode			
Column	Thermo Scientific [™] Dionex [™]	^M IonPac [™] AS19,2x25mm; 32°C			
Pre-column	Thermo Scientific™ Dionex™ IonPac™ AG19,2x5mm				
Mobile Phase	КОН				
Gradient	Time (min)	С (КОН)	Flow (mL/min)		
	0	15	0.3		
	8	15	0.3		
	13	36	0.3		
	21	36	0.3		
	21.5	70	0.3		
	25	70	0.3		
	25.5	15	0.3		
	30	15	0.3		
Injection volume	5 μ L of 5-fold diluted extract	S			
Column temperature	32°C				
Flow Make-up Solvent					
before ion source	0.15 mL/min acetonitrile	0.15 mL/min acetonitrile			
Aquired mass transitions					
Trifluoroacotic acid	113/69 T				
	113/113				
Trifluoroacetic acid ¹³ C ₂	115/70				

Table 22: Instrumentation details on Method 9 (corresponds to M 1.4: "PerChloPhos", see QuPPe PO²²)

LC	Agilent Infinity					
MS/MS	Sciex 6500QTrap+, run in	Sciex 6500QTrap+, run in ESI negative mode				
Column	Hypercarb 2.1 x 100 mm 5 μm					
Pre-column	Hypercarb Guard 2.1 x 10 mm 5 μm					
Mobile Phase	A: 1% acetic acid in water +5% methanol					
	B: 1% acetic acid in methanol					
Gradient	Time (min) Mobile Phase A (%) Flow (mL/min) 0 100 0.4					
	0	100	0.4			
	10	70	0.4			
	10.1	100	0.4			
	15	100	0.4			
Injection volume	5 μL					
Column temperature	40°C					
Aquired mass transitions						
Chlorata	83/67 T					
Chiorate	85/69					
Chlorata ¹⁸ O-	89/71					
	91/73					
Perchlorate	99/83 T					
	101/85					
Perchlorate ¹⁸ O ₂	107/89					
	109/91					
Phosphonic acid	81/79 T	81/79 T				
	81/63					
Phosphonic acid ¹⁸ Oa	87/85					
	87/67					
Thiocyanate	58/58					
Thiocyanate ¹³ C ¹⁵ N	60/60					

 $^{^{20}\} https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887\&LabID=200\&Lang=EN$

²¹ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EPRW%202020%20-%20PD87.pdf

²² https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

Table 23: Instrumentation details on Method 10 (corresponds to Method 10 (M 10): "Triazole derivative metabolites (TDMs) on Torus DEA", see QuPPe PO^{23})

LC	Waters I-Class				
MS/MS	Sciex 5500QTrap, run	Sciex 5500QTrap, run in ESI positive mode			
Column	Waters Torus [™] DEA 2.1	mm x 100 mm; 1.7 μm			
Pre-column	Waters Torus™DEA Van	Guard™ 2.1 mm x 5 mm; 1.7	μm		
Pre-filters	Waters ACQUITY UPLC (Column In-Line Filter Kit			
Mobile Phase	A: 1.2% formic acid in W	/ater			
	B: 0.5% formic acid in A	cetonitrile			
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	10	0.5		
	0.5	10	0.5		
	1.5	80	0.5		
	4.5	90	0.5		
	5	90	0.5		
	5.5	10	0.5		
	10	10	0.5		
Injection volume	10 μL				
Column temperature	50°C				
Aquired mass transitions					
	128/70 T				
1,2,4-Triazole acetic acid	128/43				
	128/73				
1,2,4-Triazole acetic acid ¹³ C ₂ ¹⁵ N ₃	133/75				
1,2,4-Triazole acetic acid D ₂	130/72				
	158/70 T				
1,2,4-Triazole lactic acid	158/43				
	158/112				
1,2,4-Triazole lactic acid ¹³ C ₂ ¹⁵ N ₃	163/75				
1,2,4-Triazole lactic acid D ₂	160/72				
	157/70 T				
1,2,4-Triazol-1yl-alanine	157/88				
	157/42				
1,2,4- Triazol-1yl-alanine ¹³ C ₂ ¹⁵ N ₃	162/75				
1,2,4-Triazol-1yl-alanine D ₂	159/42				

 $^{^{23}\} https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887\&LabID=200\&Lang=EN$

Table 24: Instrumentation details on Method 11 (corresponds to Method (M 1.3): "Glyphosate & Co.Hypercarb", see QuPPe PO²⁴)

LC	Agilent Infinity	Agilent Infinity			
MS/MS	Sciex 6500QTrap+, run in	ESI negative mode			
Column	Hypercarb 2.1 x 100 mm 5	Hypercarb 2.1 x 100 mm 5 μm			
Pre-column	- Hypercarb Guard 2.1 x 10 mm 5 μm				
Mobile Phase	A: 1% acetic acid in water +5% methanol B: 1% acetic acid in methanol				
Gradient	Time (min)	Mobile Phase A (%)	Flow (mL/min)		
	0	100	0.2		
	10	70	0.2		
	11	70	0.4		
	18	70	0.4		
	19	10	0.4		
	22	10	0.4		
	22.1	100	0.2		
	30	100	0.2		
Injection volume	5 μL				
Column temperature	40°C				
Aquired mass transitions					
Cuanuria acid	128/42 T				
	128/85				
Cyanuric acid ¹³ C ₃	131/43				

5. General remarks on validation experiments

JRL-SRM

Initial method validation was conducted the QuEChERS or the QuPPe AO procedure on 'normal' infant formula powder (see 1; group a) and on homogenized and pasteurized whole cow's milk. Validation were conducted on 2 validation levels with the low level being lower than the MRL required to ensure toxicological safety of the respective compounds in infant formulae.

When analysing cow's milk, a test portion of 10 g is used both in QuEChERS and QuPPe. In the method for infant formulae presented here, 2g of dry infant formula were employed in QuEChERS and QuPPe, which corresponds to 15-16 g reconstituted product (depending on recipe). 10 g of water is added as foreseen for any other dry commodities in QuEChERS and QuPPe.

For the analysis of the 13 toxicologically critical SRM substances in infant formulae, 7 different LC-MS/MS methods were employed. 5 of them involved measurement in the ESI-positive mode and 2 of them in the ESI-negative mode. Matrix-matched calibration solutions were prepared using blank extracts, at the 60% and 120% level of the spiked concentration. In the case of QuPPe analytes and fentin, the results were evaluated using isotopically labelled analogues of the target analytes as internal standards. In the case of QuEChERS analytes propyzamide D₃ was used. Table 26 and Table 33 show validation results for QuEChERS amenable analytes in infant formula and whole cow's milk respectively. Table 27 and Table 34 show validation results of QuPPe amenable analytes in infant

²⁴ https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=887&LabID=200&Lang=EN

formula powder and whole cow's milk respectively. More detailed results for individual MRM-transitions of diquat are shown in Table 28.

EURL-SRM

Table 29 and Table 35 show validation data of the additionally analysed substances by QuPPe AO in infant formula powder and whole cow's milk respectively. These additionally analysed substances were not included in the initial method validation experiments. They were validated in parallel to the analysis of the samples belonging to category b) to f), see below.

Exemplary chromatograms of spiked infant formula extracts are shown in Table 31 and Table 32. Exemplary chromatograms of spiked milk extracts are shown in Table 36 and Table 37.

In the course of sample analysis additional validation studies were conducted to make sure that the performance criteria are also fulfilled for other types of infant formulae (i.e. of categories b) to f). The respective LOW-Level was spiked and the samples were extracted in quintuplicate (n=5). For quality control purposes, duplicate recovery experiments were run with every batch on samples of category a) at the respective LOW-Level. As regards the ready-to-use infant formulae, duplicate recovery experiments were conducted in parallel to the analysis of the ready-to-use products belonging to category a) and c).

Figure 4 to Figure 9 and Table 30 show average recoveries in category a) to f) according to the measurement methods. Average recoveries on category a) refer to the experiments run in parallel to the sample extractions, not to initial method validation.

In some cases, for the sake of efficiency, it was decided to skip the analysis of certain samples or to run the samples using slightly different, yet equivalent, methods than those applied in the initial validation experiments. All validation experiments that ran in parallel to the analysis of the samples concerned the methods that were actually used for those samples. The differences between the methods used in initial validation and the methods used in the analysis of the samples are summarized below.

- It could be shown A-QuEChERS is suitable for all QuEChERS-amenable compounds (Avermectin B1a, Emamectin B1a, 3-Hydroxy-carbofuran, Ethoxyquin-Dimer, Gamma-Cyhalothrin, Fentin, Haloxyfop, Diclofop (free acid) and topramezone), without whereas the citrate-buffered QuEChERS was not suitable for the analysis of fentin. It was therefore decided to conduct sample analysis and additional method validation only using A-QuEChERS
- Additional validations and sample analysis on Gamma-Cyhalothrin was done by method 1 using a conventional column. This equally sensitive method was used to screen for cyhalothrin isomers in the samples. In case of positive findings, the concerned samples would have been reanalysed by method 2, which applies a chiral column, thus allowing individual quantification of the gamma- isomer.
- After observing that the analysis of milk samples did not show any positive findings of triazole derivative metabolites, it was decided not to continue the analysis with infant formulae. Validations in infant formulae were also skipped. This was backed by information from EFSA reports indicating that TDMs only end up at very low trace levels in milk.
- As Thiocyanate and Ethoxyquin-Dimer were only analysed in samples of infant formula powder and not in milk, additional validations were only performed on infant formula powder

In the case of infant formulae, the lowest spiking levels for validation experiments were chosen to remain below the calculated maximum safe MRL, which depends on the ADI of each compound. Table 25 gives an overview of the LOW and HIGH spiking levels and their relationship to the highest acceptable MRL. This relationship is additionally illustrated in Figure 3.

Some additional comments concerning specific analytes are given below:

Diquat

EURL-SRM[®]

Diquat produces several parent ions within the ion-source, each one fragmenting into various product ions. The most prominent parent ions observed are the doubly charged parent ($[M]^{2+}$; m/z 92), the singly charged protonated parent ($[M^{2+} - H^+]^+$; m/z 183) and the singly charged radical parent ($[M]^{++}$; m/z 184). The relative yields of the various parent ions were shown to greatly depend on the co-eluting matrix, which gives an additional dimension to the matrix-effects. Mass transitions from the same parent ion show a much more uniform response towards co-eluting matrix compared to mass transitions from different parents (see Table 18 and Table 38). Same applies to the mass transitions of the ILIS. For a proper equalization of the matrix effects and correct quantifications it is thus paramount that equivalent parent ions (or even better, equivalent mass-transitions) of native analyte and the corresponding ILIS are used. Table 18 shows exemplary matrix effects for various mass-transitions in infant formula powder while Table 19 gives an overview of mass transitions of diquat.

In 'normal' infant formulae extracts the signals derived from the $[M]^{2+}$ parent were not affected much by the presence of co-eluting matrix and even showed signal enhancement. In contrast, the signals derived from the other two parents $[M^{2+} - H^+]^+$ and $[M]^{+*}$ were heavily suppressed (ME -90%). The mass transitions of diquat D₈ showed the same pattern. Table 19 gives an overview of mass transitions of diquat. For reducing errors, it is thus of foremost importance using equivalent mass transitions of native analyte and ILIS. Some MRMs of the radical parent ion ($[M]^{+}$ m/z 184) showed poorer repeatability. This will be studied further.

An important aspect to be considered when working with diquat, is its tendency to interact with surfaces in the injector. This behaviour leads to carry-over into subsequent runs. Injector contamination is more pronounced when injecting solutions in solvent, whereas the carry-over from a contaminated injector to the next run is more pronounced when injecting a matrix extract rather than a solvent. These observations indicate that matrix components compete with diquat reducing its interaction with the surfaces and displacing it from the interaction sites on the surface. Injection of solvent-based standards should be avoided.

Similar observations were made for Paraquat.

Fentin

As described in an EURL-SRM observation document²⁵, fentin tends to show low recoveries using citrate buffered QuEChERS. Nearly quantitative recoveries are obtained using the acidified FA-QuEChERS. Isotope labelled fentin helps to correct for these recovery losses. When using FA-QuEChERS a generic internal standard (e.g. propyzamide D_3) may be used.

²⁵ Analysis of Organotin-Pesticides by the QuEChERS Method - Impact of acidifying on the recoveries: https://www.eurlpesticides.eu/library/docs/srm/EURL_observations_Organotins.pdf

This trend was confirmed in validation studies conducted in group b) to f) in infant food formula, see **Figure 5**.

Gamma-Cyhalothrin

JRL-SRM

Both Lambda and gamma cyhalothrin are approved within the EU. Lambda-cyhalothrin is a 1:1 mixture of two stereoisomers, one of them being gamma cyhalothrin, which is the toxicologically most toxic. Using traditional LC-columns the two constituent isomers of lambda cyhalothrin cannot be separated. For proper risk assessment the separation and separate quantification of the two isomers is, however, necessary. A method for the analysis of lambda- and gamma-cyhalothrin involving QuEChERS extraction and enantioselective LC-Separation of RS and SR-Isomers' was published in the website of the EURL-SRM²⁶.

Topramezone

Topramezone showed strong signal enhancement (~280 %) when injecting infant formula extract compared to the injection of an equally concentrated standard in pure solvent. Similar effects were also observed in other matrices. Whether these effects are due to losses in the injector in absence of matrix, needs to be further studied. At a later point of the study, extraction of Topramezone using A QuEChERS was also tested and validated successfully in infant formula powder using no internal standard. Sample analysis was therefore performed using A-QuEChERS extraction.

PTU

Validation in infant formula powder of group b) "lactose-free" was not successful. Peak intensities were at that level not sufficient. This is likely caused by stronger suppressions in this group of infant formula.

TFA, Chlorate, Perchlorate and Phosphonic acids

Validation in matrices of group b) to f) was complicated by residues in the blank material used for calibration leading to high intercept. In such cases, the slope of the curve was used for calculations.

²⁶ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_Observation_Cyhalothrin_V1.pdf

Table 25: Overview on ADI values of toxicologically critical SRM substances, required LOQs, spiking levels on powder and corresponding spiking level in reconstituted product (ready-to-use).

Analyte	Internal Standard	ADI (mg/kg body weight per day)	Required LOQ (mg/kg)	Spiking Level on Powder (mg/kg)	Spiking Level calculated on Reconst. product* (mg/kg)	Percentage of required LOQ	
Abamectin	Propyzamide D₃	0.0025	0.0096	0.05	0.0067	69%	
				0.25	0.0333	347%	
Emamectin	Propyzamide D3	0.005	0.0019	0.01	0.0013	7%	
				0.05	0.0067	35%	
3-Hydroxy-carbofuran	Propyzamide D ₃	0.00015	0.0006	0.004	0.00053	92%	
	1,7			0.02	0.0027	462%	
Gamma-Cyhalothrin	Chlorpyrifos D ₁₀	0.0012	0.0048	0.032	0.0043	92%	
Fentin	Fentin D ₁₅ or	0.0004 0.0015		0.01	0.0013	87%	
	Propyzamide D ₃	0.0004	0.0015		0.0067	433%	
Haloxyfon	Pronyzamide D.	0.00065		0.0025	0.015	0.0020	80%
Паюхуюр			0.0025	0.075	0.0100	400%	
Diclofon (free acid)	Pronyzamide Da	0.001	0 0038	0.025	0.0033	87%	
Diciolop (inee acid)	FTOPyzanniae D3	0.001 0.0038	0.125	0.0167	433%		
Amitrole	Amitrole ¹⁵ Na ¹³ Ca	0.001	0 0038	0.02	0.0027	69%	
Amilioic		0.001	0.0050	0.1	0.0133	347%	
Nicotine	Nicotine D.	0 0008	0 0021	0.02	0.0027	87%	
Nicotine	Nicotine D4	0.0008	0.0051	0.1	0.0133	433%	
Cotinine	Cotinine Da	0 0008	0 0031	0.005	0.00067	22%	
countre		0.0008	0.0051	0.025	0.0033	108%	
DTU		0 0003	0.0012	0.005	0.00067	58%	
10		0.0005	0.0012	0.025	0.0033	289%	
Diquat	Diquat D.	0.002	0.0076	0.05	0.0067	87%	
Diquat	Diquat D ₈	0.002	0.0078	0.25	0.0333	433%	
Topramozono		0.001	0 0029	0.005	0.00067	17%	
		0.001	0.0056	0.025	0.0033	87%	

*Calculated based on a conversion factor 7.5

RL-SRM

** Please read important note on MPPA D3 under Table 20

Figure 3: Levels of highest acceptable MRL in μ g/kg in comparison to actually validated spiked levels calculated on reconstituted products in μ g/kg.

5.1 Analytical Performance data for Infant formulae

EURL-SRM

 Table 26: QuEChERS AO and A-QuEChERS recovery data of toxicologically critical SRM substances in 'normal' infant formula powder. Matrix-matched calibration using internal standard (n = 5).

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg) ^A	Mean Rec. (%)	RSD (%)
	891/305 T				0.05	107	4.3
Analyte Avermectin B1a (NH4-Adduct was used as parent) Emamectin B1a 3-Hydroxycarbofuran Gamma-Cyhalothrin	891/567		OUECHERS	2 a	(0.0067)	110	7.1
Assessment a string D1 s	891/305 T		QUECHERS	Ζg	0.25	105	6.4
	891/567	Bronyzamido De			(0.0333)	107	5.9
as parent)	891/305 T				0.05	96	13.6
	891/567		A-QuEChERS	2 σ	(0.0067)	104	12.6
	891/305 T			25	0.25	104	8.2
	Transition Internal Standard Extraction method Sample Weight Sample (n Sample Weight Sample (n Sample Weight Sample (n Sample Weight Sample (n Sample Weight Sample (n Sample (n	(0.0333)	109	11.8			
	887/82 T				0.01	102	6.1
	887/158		OUEChERS	2σ	(0.0013)	104	5.5
	887/82 T		Queenens	- 5	0.05	103	4.1
Emamectin B1a	887/158	Pronyzamide D ₂			(0.0067)	103	4.2
	887/82 T				0.01	104	5.6
	887/158		A-OuEChERS	2 g	(0.0013)	96	6.9
	887/82 T			- 0	0.05	99	1.8
	887/158				(0.0067)	105	3.7
	238/163 T				0.004	100	4.2
	238/181				(0.00053)	99	9.0
	238/220		QuEChERS	2 g		93	14.1
3-Hydroxycarbofuran	238/163 T		-	Ũ	0.02	98	1.9
	238/181	Propyzamide D ₃			(0.0027)	98	4.9
	238/220					104	6.1
	238/163 T		A-QuEChERS	2 g	0.004	105	6.2
	238/181				(0.00053)	105	10.6
	238/220					107	16.9
	238/163 1				0.02	105	6.2
	238/181				(0.0027)	100	4.6
	238/220					95	6.6
	467/225 1	-		2 g	0.032	99	1.7
Gamma-Cyhalothrin	467/450	Chlorpyrifos D ₁₀	QuEChERS	2 g	(0.0043)	103	1.1
	467/2251	-			0.064	95	6.7
	407/450				(0.0086)	93	7.0
	360/288 1				0.015	103	3.1
	362/290	-			(0.0020)	100	4.5
	360/190 260/288 T	-	QuEChERS	2 g		109	3.5
	262/200	-			0.075	90	2.5
Halowfor	360/106	-			(0.0100)	33 102	2.9
паюхуюр	360/190 360/288 T	Propyzamide D ₃				105	-+.U
	362/200				0.015 (0.0020)	105	2.1
	360/106					107	3.8
	360/190 360/288 T		A-QuEChERS	2 g		101	J.8 2 1
	362/200				0.075	105	43
	360/196				(0.0100)	105	2.0
	300/190					103	2.0

(mg/kg) ^k	
351/120 T 99	8.0
351/197 (0.0013) 95	3.1
349/195 Fontin Due 2 g	1.7
351/120 T 99	2.5
351/197 (0.0067) 98	1.6
349/195 OUECHERS 0100077 97	1.5
351/120 T 37	11.4
351/197 (0.0013) 36	5.0
349/195 Propyzamide D ₂ 2 g	7.1
351/120 T 43	12.2
351/197 (0.0067) 41	15.0
349/195 42	13.4
Fentin 351/120 T	3.3
351/197 (0.0013) 100	1.3
349/195 Eentin Dar 2 g 104	3.0
351/120 T	1.0
351/197 (0.0067) 102	0.9
349/195 103	1.9
351/120 T A-QUECHERS 0 01 102	3.5
351/197 (0 0013) ¹⁰⁰	3.1
349/195 103	4.4
351/120 T Propyzamide D ₂ 2 g 100	2.2
351/197 0.05	2.2
349/195 (0.0067) 100	1.6
325/253 T 106	7.5
325/255 (0.0023) 99	5.2
325/145 OUECHERS 2.3 g	4.3
325/253 T 2 g 99	7.2
325/255 (0.0157) 101	2.4
325/145 Reputamida D	5.6
325/253 T 106	4.3
325/255 (0.0023) 104	2.7
325/145 A OUTCHERS 2 2 7 103	6.7
325/253 T A-QUECNERS 2 g 108	3.3
325/255 0.125 105	3.8
325/145 107	1.5
362/334 T 101	6.2
Topramezone 362/318 - A-QuEChERS 2g (0.005* 76	10.5
362/194 (0.00067) 88	5.1

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses.

* validated in category b) lactose-free

 Table 27: QuPPe-AO recovery data of toxicologically critical SRM substances in 'normal' infant formula powder. Matrix-matched calibration using internal standard (n = 5).

EURL-SRM

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg) ^A	Mean Rec. (%)	RSD (%)
	85/43 T				0.02	99	3.7
	85/58	1			0.02	105	5.7
Austinala	85/57		QuPPe AO	2 -	(0.0027)	106	5.2
Amitrole	85/43 T	Amitrole ${}^{13}N_2 {}^{13}C_2$		Zg	0.1	104	2.1
	85/58	1			0.1	101	2.3
	85/57	1			(0.0133)	96	5.7
	163/130 T				0.02	99	13.8
	163/132	1	QuPPe AO	2 g	0.02	97	15.6
Nicotino	163/84				(0.0027)	102	13.4
Nicotine	163/130 T	NICOTINE D ₄				119	15.9
	163/132	1			0.1 (0.0133)	117	17.6
	163/84	1				118	15.2
	177/80				0.005	98	5.7
Catinina	177/98	Catinina D		2 ~	(0.00067)	96	4.0
Cotimine	177/80	Countrie D_3	QUPPE AU	Zg	0.025	102	4.7
	177/98				(0.0033)	101	4.6
	117/60 T		QuPPe AO			101	3.8
	117/58				0.005	117	10.8
DTU	117/72			2 g	(0.00067)	126	25.1
PIU	117/60 T				0.025	103	4.6
	117/58	1				116	6.7
	117/72				(0.0055)	116	16.7
	92/84					109	16.4
	183/157				0.05	91	10.7
Diquat	92/157	Diquat D *		2 a	(0.0007)	90	13.5
Diquat	92/84	Diquat D ₈	QUFFEAO	2 g	0.05	98	3.9
	183/157				0.25	96	5.2
	92/157				(0.055)	100	4.1
	362/334 T				0.005	89	9.5
	362/318				0.005	95	4.5
Topramezone	362/194			2 g	(0.00007)	92	3.0
ropialitezoile	362/334 T	WITTA D3	QurreAU		0.025	86	8.5
	362/318				0.025 (0.0033)	90	6.8
	362/194					85	5.6

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses.

* It is important to use an MRM of the ILIS that corresponds to that of the native substance (equivalent parent ion) ** Please read important note on MPPA D3 under **Table 20**

Table 28: Detailed validation results in infant food formula for individual transitions of Diquat using the corresponding parent masses of ILIS.

Transition of Diquat native substance	MRM	Transition of Diquat D ₈ ILIS	Extraction method	Sample Weight	Spiking Level (mg/kg) ^A	Mean Rec. (%)	RSD (%)
	92/84					109	16.4
Diquat [M] ²⁺	92/157	Diquat D. [M] ²⁺ 96/88				90	13.5
	92/78					- 1)	- 1)
	92/130					_ 1)	_ 1)
	183/157				0.05	91	10.7
Diquat [M ²⁺ - H ⁺] ⁺	183/130	Diquat Do [M ²⁺ - H ⁺] ⁺ 191/165	QuPPe AO			- ¹⁾	- 1)
	183/168					- ¹⁾	- 1)
	183/78			2 g	0.05	- 1)	- 1)
	184/128				(0.0087)	87	13.6
	184/106					92	8.9
	184/78					- 1)	- 1)
Diquat [M]+•	184/156	Diquat D ₈ [M]⁺• 192/134				- 1)	- 1)
	184/169					- 1)	- 1)
	184/155					109	20.0
	184/168					109	7.1
	92/84					98	3.9
Diquat [M] ²⁺	92/157	Diquat D ₂ [M] ²⁺ 96/88				100	4.1
	92/78					109	14.3
	92/130					91	3.9
	183/157					96	5.2
Diquat [M ²⁺ - H ⁺] ⁺	183/130	Diquat D₀ [M²+ - H+]+ 191/165				101	6.6
	183/168				0.25	103 ²⁾	8.9 ²⁾
	183/78		QuPPe AO	2 g	(0.0333)	92	12.1
	184/128				(0.0333)	92	9.8
	184/106					109	6.7
	184/78					98	4.6
Diquat [M]+•	184/156	Diquat D ₈ [M]+• 192/134				102	9.5
	184/169					94	5.7
	184/155					98	12.9
	184/168					88	11.1

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses.

1) Poor peak intensity affecting repeatability and accuracy

2) Poor Linearity of Calibration

Table 29: QuPPe-AO recovery data of additionally analysed substances in 'normal' infant formula powder.Matrix-matched calibration using internal standard (n = 5).

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg) ^A	Mean Rec. (%)	RSD (%)
	93/171				0.05	103	15.5
	186/171				0.05	101	12.1
Davaavat	93/77	Deve sweet D	QuPPe AO	2 -	(0.0067)	97	24.5
Paraquat	93/171	Paraquat D ₈		2 g	0.25	103	4.9
	186/171				0.25	95	4.1
	93/77				(0.0333)	108	6.6
Tuifluous satis said	113/69	Trifluoro acetic	0.00.40	_	0.05*	98	6.3
I rifluoracetic acid	113/113	acid ¹³ C ₂	Quppe AO	2 g	(0.0067)	118	9.8
	128/70					100	8.6
	128/73			2 g	0.05 (0.0067)	76	7.0
T uta a la consta contel	128/43	1,2,4-Triazole				98	12.2
I riazole acetic acid	128/70	acetic acid ¹³ C ₂ ¹⁵ N	QUEFEAU			100	2.0
	128/73				0.1	83	8.4
	128/43				(0.0133)	102	7.4
	158/70					110	4.3
Tuiseala lastia asid	158/43				0.02	94	14.4
	158/112	1,2,4-Triazole lactic acid ¹³ C ₂ ¹⁵ N	0.00.40	_	(0.0027)	81	38.7
I riazole lactic acid	158/70		QUPPE AO	2 g		105	4.0
	158/43				0.04	106	15.5
	158/112				(0.0054)	99	18.1
	157/70		QuPPe AO	2 g		94	14.0
Triazole alanine	157/88	1,2,4-1 riazole-1yi-			0.05	91	20.9
	157/42	alanine ¹³ C ₂ ¹³ N			(0.0067)	103	16.3
Malamina	127/85	Molomino 15N		2 ~	0.02*	124	4.0
weidmine	127/68		QUPPEAO	Ζg	(0.0027)	123	6.4
Chlorata	83/67	Chlorata 180		2 a	0.02*	107	8.7
Chiorate	85/69		QUFFEAO	2 g	(0.0027)	119	13.5
Dorchlorato	99/83	Porchlorato 180		2 a	0.02*	110	5.5
Perchiorate	101/85		QUPPEAO	Ζg	(0.0027)	100	14.1
Phoenhonic acid	81/79	Phosphonic acid		2 a	0.05*	102	15.7
Phospholic acid	81/63	¹⁸ O ₃ ¹⁸ O ₃	QUPPEAO	Zg	(0.0067)	103	18.2
Thiocyanate	58/58	Thiocyanate ¹³ C ¹⁵ N	QuPPe AO	2 g	0.5** (0.067)	98	12.2
	433/216		A-QuEChERS	2g	0.005**	96	5.8
Ethoxyquin-Dimer	433/188	Propyzamide D ₃			(0.005**	90	11.7
	433/375					91	6.0

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses. *validation on category b) lactose-free

** validation on category c) hypoallergenic

Figure 4: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 1 (n=2 or n=5, see labelling on the left of the diagram). Cyhalothrin-gamma was analysed on the C₁₈ column that does not result in a chiral separation. Spiking Levels: Carbofuran-3-OH: 0.004 mg/kg in IFP and 0.0008 mg/kg in IFRTU; Abamectin: 0.05 mg/kg in IFP and 0.002 mg/kg in IFRTU; Cyhalothrin-gamma: 0.032 mg/kg in IFP and 0.0064 mg/kg in IFRTU; Ethoxyquin-Dimer: 0.005mg/kg.

-SRI

Figure 5: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 3 (n=2 or n=5, see labelling on the left of the diagram) and comparison of results using Fentin D₁₅ or Propyzamide D₃ ILIS for the determination of Fentin. Spiking Levels: Fentin: 0.01 mg/kg in IFP and 0.002 mg/kg in IFRTU.

L-SRA

Figure 6: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 4 (n=2 or n=5, see labelling on the left of the diagram). Spiking Levels: Haloxyfop: 0.015 mg/kg in IFP and 0.003 mg/kg in IFRTU; Diclofop: 0.025 mg/kg in IFP and 0.005 mg/kg in IFRTU.

RL-SRN

Figure 7: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 5 (n=2 or n=5, see labelling on the left of the diagram). Spiking Levels: Amitrole: 0.02 mg/kg in IFP and 0.004 mg/kg in IFRTU; Nicotine: 0.02 mg/kg in IFP and 0.001 mg/kg in IFRTU; PTU: 0.005 mg/kg in IFP and 0.001 mg/kg in IFRTU; Melamine: 0.02 mg/kg in IFP and 0.004 mg/kg in IFRTU.

Method 6

L-SRI

Figure 8: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 6 (n=2 or n=5, see labelling on the left of the diagram). Spiking Levels: Diquat: 0.05 mg/kg in IFP and 0.01 mg/kg in IFRTU; Paraquat: 0.05 mg/kg in IFP and 0.01 mg/kg in IFRTU.

Method 7 and Method 8

L-SRI

Figure 9: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 7 and 8 (n=2 or n=5, see labelling on the left of the diagram). Spiking Levels: Topramezone: 0.005 mg/kg in IFP and 0.001 mg/kg in IFRTU; Trifluoracetic acid: 0.05 mg/kg in IFP and 0.01 mg/kg in IFRTU.

Table 30: Average Recovery rates of target transitions in % in category a) to f) in infant formula powder (IFP) respectively ready-to-use products (IFRTU) of analytes covered by method 9 (n=2 or n=5).

Category	Details**	n	Chlorate	Perchlorate	Phosphonic acid
	Spiking Level in mg/kg		0.02	0.02	0.05
a) Normal IFP	Recovery in %	n=5	132	109	*
	RSD in %		3.6	4.3	
	Spiking Level in mg/kg		0.004	0,004	0.01
a) Normal IFRTU	Recovery in %	n=2	124	*	114
	RSD in %		3.9		19.2
	Spiking Level in mg/kg		0.02	0.02	0.05
b) Lactose-free IFP	Recovery in %	n=5	107	110	102
	RSD in %		8.7	5.5	15.7
	Spiking Level in mg/kg		0.02	0.02	0.05
c) Hypoallergenic IFP	Recovery in %	n=5	84	110	*
	RSD in %		12.8	12.5	
	Spiking Level in mg/kg		0.004	0.004	0.01
c) Hypoallergenic IFRTU	Recovery in %	n=2	88	115	*
	RSD in %		8.9	3.1	
	Spiking Level in mg/kg		0.02	0.02	0.05
d) Anti-reflux IFP	Recovery in %	n=5	111	126	126
	RSD in %		21.4	9.2	12.8
	Spiking Level in mg/kg		0,02	0.02	0.05
e) Anti-colic IFP	Recovery in %	n=5	*	93	97
	RSD in %			9.1	10.2
	Spiking Level in mg/kg		0,02	0.02	0.05
f) Plant-based IFP	Recovery in %	n=5	*	99	*
	RSD in %			9.0	

* not validated because of too high residue levels in blank matrix

** spiking levels refer to the product listed under "Category"

JRL-SRM

IFP: Infant formula powder; IFIFRTU: Infant formula ready to use

Table 31: Exemplary chromatograms of target analytes in infant food formula derived from injecting solventbased and matrix-matched calibration standards at 120% of the respective lowest spiking level in validation experiments using QuEChERS, A-QuEChERS and QuPPe AO.

Analyte Transition	Spiking Level on powder (mg/kg) ^A	Peak resulting from injecting solvent-based standard				Peak resulting from injecting <u>matrix-based</u> standard in infant formula powder of category a)				
Avermectin B1a 891/305 [M+NH₄]⁺	0.05 (0.0067) - QuECHERS	Intensity	15000 - 10000 - 5000 - 0 -	10.48 10.2 10.4 10.6 10.8 Time min	Intensity	(at 12 15000 10000 5000 0	10% of spiking level, see left)			
	0.05 (0.0067) - A-QuEChERS	Intensity	15000 - 10000 - 5000 - 0 -	10.2 10.4 10.6 10.8 Time, min	Intensity	10000 - 5000 -	10.49 10.2 10.4 10.6 10.8 Time, min			
Emamectin B1a 887/82	0.01 (0.0013) - QuEChERS	Intensity	8e4 - 6e4 - 4e4 - 2e4 - 0e0 -	9.63 9.2 9.4 9.6 9.8 10.0 Time, min	Intensity	6e4 · 4e4 · 2e4 · 0e0 ·	9.2 9.4 9.6 9.8 10.0 Time.min			
	0.01 (0.0013) - A-QuEChERS	Intensity	5e4 - 4e4 - 3e4 - 2e4 - 1e4 - 0e0 -	9.63 9.2 9.4 9.6 9.8 10.0 Time, min	Intensity	4e4 - 3e4 - 2e4 - 1e4 - 0e0 -	9.64 9.2 9.4 9.6 9.8 10.0 Time. min			
2 Hudrovy carbofuran	0.004 (0.00053) - QuEChERS	Intensity	10000 - 8000 - 6000 - 4000 - 2000 - 0 -	0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	Intensity	8000 6000 4000 2000 0				
3-Hydroxy-carbofuran 238/163	0.004 (0.00053) - A-QuEChERS	Intensity	5000 - 4000 - 3000 - 2000 - 1000 - 0 -	0.8 1.0 1.2 1.4 1.6 Time, min	Intensity	5000 4000 3000 2000 1000 0	0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Time, min			
Gamma-cyhalothrin 467/225	0.032 (0.0043) - QuEChERS	Intensity	7000 - 6000 - 5000 - 4000 - 3000 - 2000 - 1000 - 0 -	11.20 10.0 10.5 11.0 11.5 12.0 Time, min	Intensity	6000 4000 2000 0	10.0 10.5 11.0 11.5 12.0 1 Time, min			

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses.

*in category b) lactose-free

Table 32: Exemplary chromatograms of target analytes of additionally analyzed compounds in infant food formula derived from injecting solvent-based and matrix-matched calibration standards at 120% of the respective lowest spiking level in validation experiments using QuPPe AO.

Analyte Transition	Spiking Level on powder (mg/kg) ^A		Peak resulting from injecting solvent-based standard (at 120% of spiking level, see left)		Peak resulting from injecting <u>matrix–based</u> standard in infant formula powder of category a) (at 120% of spiking level, see left)
Paraquat 93/171 [M ²⁺]	0.05 (0.0067) - QuPPe AO	Intensity	3000 - 3.88 2000 - 3.88 1000 - 2 - 3 - 4 - 5 - 6 Time, min	Intensity	5000 4000 3000 2000 1000 0 2 2 3 4 4 5 6 Time, min
Trifluoracetic acid 113/69	0.05 (0.0067) - QuPPe AO	Intensity	4e4 3e4 2e4 1e4 0e0 7 8 9 10 Time, min	Intensity	5e4 4e4 3e4 2e4 1e4 0e0 7 8 9 10 Time, min
Triazole acetic acid 128/70	0.05 (0.0067) - QuPPe AO	Intensity	3e5 2e5 1e5 0e0 1.8 2.0 2.2 2.4 Time, min	Intensity	3e5 2e5 1e5 0e0 1.8 2.0 2.13 2.13 0e0 1.8 2.0 2.2.4 Time, min
Triazole lactic acid 158/70	0.02 (0.0027) - QuPPe AO	Intensity	1.0e5 8.0e4 6.0e4 4.0e4 2.0e4 0.0e0 1.6 1.8 2.0 2.2 Time, min	Intensity	4e5 3e5 2e5 1e5 0e0 1.6 1.8 2.0 2.2 Time, min
Triazole alanine 157/70	0.05 (0.0067) - QuPPe AO	Intensity	8e4 6e4 4e4 2e4 0e0 1.2 1.4 1.6 1.8 2.0 Time, min	Intensity	4e4 3e4 2e4 1e4 0e0 1.2 1.4 1.6 1.8 2.0 Time, min
Melamine 127/85*	0.02 (0.0027) - QuPPe AO	Intensity	8e4 6e4 4e4 2e4 0e0 2.6 2.8 3.04 3.04 3.04 2.0 3.04 3.04 7 3.04 7 3.04 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Intensity	6e4 4e4 2e4 0e0 2.6 2.8 3.0 3.04 3.04 3.04 3.04 3.04 3.04 7 3.04 7 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7

Analyte Transition	Spiking Level on powder (mg/kg) ^A	Peak resulting from injecting <u>solvent-based</u> standard (at 120% of spiking level, see left)		ļ	Peak resulting from injecting matrix-based standard in infant formula powder of category a) (at 120% of spiking level, see left)
Chlorate 83/67*	0.02 (0.0027) - QuPPe AO	Intensity	10000 5000 0 0.5 1.0 1.9 2.0 2.5 Time, min	Intensity	15000 10000 5000 0 0.5 1.0 1.9 2.0 2.5 Time, min
Perchlorate 99/83*	0.02 (0.0027) - QuPPe AO	Intensity	20000 15000 10000 5000 0 1.8 2.0 2.15 2.15 2.15 1.8 2.0 2.2 2.4 2.6 Time, min	Intensity	20000 15000 10000 5000 0 1.8 2.0 2.2 2.4 2.6 Time, min
Phosphonic acid 81/79*	0.05 (0.0067) - QuPPe AO	Intensity	8000 4000 2000 0 0.5 1.0 1.33 1.33 0 0.5 1.0 1.5 2.0 2.5 3.0 Time, min	Intensity	15000 10000 5000 0 0.5 1.0 1.5 2.0 2.5 3.0 Time, min
Thiocyanate 58/58**	0.5 (0.067) - QuPPe AO	Intensity	7e4 6e4 5e4 4e4 3e4 2e4 1e4 0e0 1 2 3 4 5 6 7 8 9 Time, min	Intensity	3e4 2e4 1e4 0e0 1 2 3 4 5 6 7 8 9 Time, min
Ethoxyquin-Dimer 433/216**	0.005 (0.00067) - A-QuEChERS	Intensity	4000 3000 2000 1000 0 7.5 8.0 8.5 Time, min	Intensity	25000 20000 15000 0 7.0 7.5 8.0 Time, min

^A Spiking level calculated on reconstituted product based on a conversion factor 7.5 in mg/kg in parentheses.
 * In category b) lactose-free

EURL-SRM

** In category c) hypoallergenic; peak in solvent at 0.1 $\mu\text{g/mL}$

<u>5.2 Milk</u>

EURL-SRM

Table 33: QuEChERS AO and A-QuEChERS recovery data of toxicologically critical SRM substances in **whole** cow's milk. Matrix-matched calibration using internal standard (n = 5).

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg)	Mean Rec. (%)	RSD (%)
	891/305 T				0.002	101	8.8
	891/567		OUECHERS	10σ	0.002	92	17.2
Avermentin B12	891/305 T		Queenens	105	0.005	108	9.4
(NH₄-Adduct was used	891/567	Pronyzamide Da			0.005	100	14.8
as parent)	891/305 T				0.002	110	6.5
	891/567		A-OUEChERS	10σ	0.002	94	8.0
	891/305 T		A QUECHENS	108	0.005	98	3.2
	891/567				0.005	105	4.6
	887/82 T				0.002	103	3.0
	887/158		OUECHERS	10σ	0.002	103	4.6
	887/82 T		Queenens	10g	0.005	109	4.4
Emamertin B1a	887/158	Pronyzamide Da			0.005	112	4.5
	887/82 T				0.002	109	2.6
	887/158		A_OUECHERS	10σ		101	3.5
	887/82 T		A-QUECHENS	10g		106	2.8
	887/158				0.005	107	3.3
	238/163 T					96	3.8
	238/181				0.002	99	2.5
	238/220		OUECHERS	10g		102	5.3
	238/163 T		QUECHERS	IUg		103	6.9
	238/181				0.005	104	5.2
2-Hydroxycarbofuran	238/220	Pronyzamide Da				104	4.8
S-fryuroxycarboruran	238/163 T					104	3.9
	238/181			10g	0.002	109	4.7
	238/220		A-OUECHERS			104	4.8
	238/163 T		A-QUECHENS			100	3.2
	238/181				0.005	103	4.6
	238/220					106	3.1
	360/288 T					106	1.6
	362/290				0.002	104	3.0
	360/196					111	4.4
	360/288 T					107	0.9
	362/290				0.005	107	3.7
Haloxyfop	360/196					108	5.9
- / - P	360/288 T	Propyzamide D ₃	QuEChERS	10g		113	8.1
3 3 3 3	362/290				0.002	114	5.4
	360/196					111	4.9
	360/288 T					105	1.9
	362/290				0.005	107	2.6
	360/196					109	5.6

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg)	Mean Rec. (%)	RSD (%)
	351/120 T					92	5.9
	349/195				0.002	92	2.8
	351/197					89	4.8
	351/120 T					95	3.4
	349/195				0.005	91	2.4
Eentin	351/197	Pronyzamide D.	A-OUECHERS	10σ		89	1.6
rentin	351/120 T		A-QUECHERS	10g		110	2.4
	349/195				0.002	103	1.4
	351/197					104	6.3
	351/120 T				0.005	103	3.9
	349/195					102	1.8
	351/197					99	2.6
	325/253 T					106	2.7
	325/255				0.002	105	7.3
	325/145		OUECHERS	10σ		101	8.9
	325/253 T		QUECHERS	10g		102	6.1
	325/255	Propyzamide D₃			0.005	101	1.8
Diclofon (frog acid)	325/145					101	4.0
	325/253 T					104	4.6
	325/255		A-QuEChERS		0.002	106	6.0
	325/145			10σ		105	4.0
	325/253 T			IUE	0.005	107	3.6
	325/255					106	2.6
	325/145					111	7.3
	362/334 T					46	22.5
	362/318				0.002	42	33.3
	362/194		OUECHERS	10σ		47	21.8
	362/334 T		QUECHENS	10g		40	33.7
	362/318				0.005	40	30.1
Tonramezone	362/194	_				40	42.4
i opramezone	362/334 T					85	2.9
	362/318				0.002	83	2.9
	362/194		A-OUECHERS	10g		86	3.9
	362/334 T		A QUECHENS	IUg	0.005	86	2.0
	362/318					83	4.5
	362/194					99	9.5

EURL-SRM 🛃

00

Table 34: QuPPe-AO recovery data of toxicologically critical SRM substances in **whole cow's milk**. Matrixmatched calibration using internal standard (n = 5).

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg)	Mean Rec. (%)	RSD (%)
	85/43 T					98	2.7
	85/58				0.01	94	2.7
Amituala	85/57	Amitrala 15NL 13C	QuPPe AO	10 ~		99	2.0
Amitrole	85/43 T	Amitrole ¹³ N ₂ ¹³ C ₂		10 g		101	1.9
	85/58				0.05	102	1.7
	85/57					103	2.1
	163/130 T					103	4.6
	163/132			10 g	0.01	105	7.6
Nicotino	163/84	Nigoting D				103	3.7
Nicotine	163/130 T	NICOLINE D ₄	Quppe AU		0.05	103	2.2
	163/132					103	1.1
	163/84					105	2.8
	177/80				0.01	103	1.3
Cotinino	177/98	Cotinino D.		10 g	0.01	102	1.9
	177/80		QUFFEAO	10 g	0.05	102	1.6
	177/98				0.05	102	1.5
	117/60 T		QuPPe AO			104	3.6
	117/58			10 g	0.01	102	2.1
DTII	117/72					107	9.0
	117/60 T	1006			0.05	102	3.0
	117/58					99	2.1
	117/72					102	2.8
	92/84					106	16.4
	183/157				0.01	95	5.7
Diquat	92/157	Diquat D. *		10 σ		88	8.3
Diquat	92/84		QurreAO	10 g		108	7.4
	183/157				0.05	102	1.0
	92/157					105	9.7
	362/334 T					80	10.6
	362/318				0.01	81	13.5
Topramezone	362/194	MPPA D ₂ **	ΟυΡΡΑ ΔΟ	10 g		79	9.6
ropidilezone	362/334 T		Quire AU			86	9.4
	362/318				0.05	88	12.2
	362/194					89	11.3

* It is important to use an MRM of the ILIS that corresponds to that of the native substance (equivalent parent ion)

** Please read important note on MPPA D3 under Table 20

Table 35: QuPPe-AO recovery data of additionally analysed substances in **whole cow's milk**. Matrix-matched calibration using internal standard (n = 5).

EURL-SRM

Analyte	Transition	Internal Standard	Extraction method	Sample Weight	Spiking Level (mg/kg)	Mean Rec. (%)	RSD (%)
	93/171					103	9.9
	186/171				0.01	96	3.5
Paraquat	93/77	Paraquat D.		10 g		98	19.2
raiaquat	93/171	r al aquat Dg	QUFFEAO	10 g		121	11.6
	186/171				0.05	103	4.3
	93/77					121	21.1
	113/69				0.01	110	4.5
Trifluoracetic acid	113/113	Trifluoro acetic acid ¹³ Ca		10 σ	0.01	*	*
	113/69		QUFFEAO	10 g	0.02	110	5.6
	113/113				0.02	129	7.7
	128/70					99	5.7
	128/73				0.05	89	8.2
Triazole acetic acid	128/43	1,2,4-Triazole acetic	ΟυΡΡε ΑΟ	10 g		101	5.2
	128/70	acid ¹³ C ₂ ¹⁵ N	Quireno			76	5.9
	128/73				0.1	68	11.2
	128/43					73	6.3
	158/70					102	1.9
	158/43				0.05	105	3.9
Triazole lactic acid	158/112	1,2,4-Triazole lactic acid	OuPPe AO	10 g		110	10.5
	158/70	¹³ C ₂ ¹⁵ N	Qui i c / lo			98	1.4
	158/43				0.1	96	1.9
	158/112					96	3.2
	157/70		QuPPe AO			101	11.3
	157/88			10 g	0.05	109	10.3
Triazole alanine	157/42	1,2,4-Triazole-1yl-			0.1	101	10.9
	157/70	alanine ¹³ C ₂ ¹⁵ N				100	10.4
	157/88					110	11.8
	157/42					106	9.2
	127/85				0.01	89	5.2
Melamine	127/68	Melamine ¹⁵ N ₃	QuPPe AO	10 g		82	7.4
	127/85		-	U	0.05	94	5.7
	127/68					87	5.5
	83/67				0.01	96	5.6
Chlorate	85/69	Chlorate ¹⁸ O ₃	QuPPe AO	10 g		102	5.1
	83/67			-	0.02	98	15.5
	85/69					100	9.0
Perchlorate	99/83	Perchlorate ¹⁸ O ₄	QuPPe AO	10 g	0.01	96	2.7
	101/85			-		88	13.3
	81/79				0.05	87	/.4
Phosphonic acid	81/63	Phosphonic acid ¹⁸ O ₃	QuPPe AO	10 g		**	**
	81/79			-	0.1	101	3.6
	81/63					**	**
	128/42				0.05	111	8.5
Cyanuric acid	128/85	Cyanuric acid ¹³ C ₃	QuPPe AO	10 g		104	15.6
	128/42				0.1	100	4.3
	128/85					108	6.5

* The "transition" 113/113 is much more interfered compared to the target transition. Estimated LOQ of target transition is lower than 0.01 mg/kg.

** Unable to quantify using this method (Method 9) due to a strong interference of phosphate on this transition.

Table 36: Exemplary chromatograms of target analytes in whole cow's milk derived from injecting solventbased and matrix-matched calibration standards at 120% of the respective lowest spiking level in validation experiments using QuEChERS, A-QuEChERS and QuPPe AO.

Analyte Transition	Spiking Level on milk (mg/kg)		Peak resulting from injecting solvent-based standard	n	Peak resulting from injecting <u>natrix–based</u> standard in whole cow's milk
	(IIIg/Kg)				(at 120% of spiking level, see left)
Avermectin B1a 891/305 [M+NH₄]⁺	0.002 - QuEChERS	Intensity	3000 - 2000 - 1000 - 0	Intensity	3000 - 2000 - 1000 - 0
	0.002 - A-QuEChERS	Intensity	3000 - 2000 - 1000 - 0	Intensity	4000 3000 2000 0 0 0 100 100 100 100 110 Time, min
Emamectin B1a 887/82	0.002 - QuEChERS	Intensity	7e4 6e4 5e4 4e4 3e4 2e4 1e4 0e0 9.5 t 10.0 Time, min	Intensity	7e4 6e4 5e4 4e4 3e4 2e4 1e4 0e0 9.5 T 10.0 Time, min
	0.002 - A-QuEChERS	Intensity	6e4 - 5e4 - 4e4 - 3e4 - 2e4 - 1e4 - 0e0 - 9.5 * 10.0 Time, min	Intensity	5e4 4e4 3e4 1e4 0e0 9.5 * 10.0 Time, min
3-Hydroxy-carbofuran 238/163	0.002 - QuEChERS	Intensity	4e4 - 3e4 - 2e4 - 1e4 - 0e0 - 1.0 1.5 Time, min	Intensity	4e4 - 3e4 - 2e4 - 1e4 - 0e0 - 1.0 1 .5 Time, min
	0.002 - A-QuEChERS	Intensity	3e4 2e4 1e4 0e0	Intensity	3e4 2e4 1e4 0e0
Gamma-cyhalothrin 467/225 T (as lambda-cyhalothrin on C_{18} column)	0.032 - QuEChERS	Intensity	15000 10000 5000 0 6.0 6.5 7.0 Time, min	Intensity	15000 10000 5000 0 6.0 6.5 7.0 Time, min

Analyte Transition	Spiking Level on milk (mg/kg)	Peak resulting from injecting <u>solvent–based</u> standard (at 120% of spiking level, see left)	Peak resulting from injecting <u>matrix–based</u> standard in whole cow's milk (at 120% of spiking level, see left)
Topramezone 362/334	0.01 - A-QuChERS	20000 1.74 15000 5000 0 1.0 1.5 20 2.5 3.0 Time, min	1.73 15000 5000 0 1.0 1.73 1.75 1.7

EURL-SRM

Table 37: Exemplary chromatograms of target analytes of additionally analysed compounds in whole cow's milk derived from injecting solvent-based and matrix-matched calibration standards at 120% of the respective lowest spiking level in validation experiments using QuPPe AO.

Analyte Transition	Spiking Level on milk (mg/kg)		Peak resulting from injecting solvent-based standard (at 120% of spiking level, see left)	Ī	Peak resulting from injecting <u>matrix–based</u> standard in whole cow's milk (at 120% of spiking level, see left)
Paraquat 93/171 [M ²⁺]	0.01 - QuPPe AO	Intensity	6000 5000 4000 3000 2000 1000 0 1.5 2.0 2.5 3.0 3.5 1 ,0 4.5 5.0 5.5 6.0 Time, min	Intensity	15000 10000 5000 0 1.5 2.0 2.5 3.0 3.5 1 .0 4.5 5.0 5.5 6.0 Time, min
Trifluoracetic acid 113/69	0.01 - QuPPe AO	Intensity	3e4 2e4 1e4 0e0 6 7 8 9 10 Time, min	Intensity	3e4 2e4 1e4 0e0 6 7 8 9 10 Time, min
Triazole acetic acid 128/70	0.05 - QuPPe AO	Intensity	1.0e6 5.0e5 0.0e0 1.8 2.0 2.2 2.4 Time, min	Intensity	2.38 1.0e6 5.0e5 0.0e0 1.8 2.0 2.2 2.4 Time, min
Triazole lactic acid 158/70	0.05 - QuPPe AO	Intensity	1.0e6 5.0e5 0.0e0 1.6 1.8 2.07 2.07	Intensity	1.0e6 8.0e5 6.0e5 4.0e5 2.0e5 0.0e0 1.6 1.8 2.0 2.05 2.2 2.2 2.4 Time, min

* at 0.024 mg/kg

6. Matrix effects

Matrix effects were determined by comparing peak areas obtained from injecting solvent-based standards with the areas obtained when injecting equally concentrated standards prepared in blank extract. Calculation was accomplished using the following equation:

$$ME (\%) = \frac{Area_B}{Area_A} \cdot 100 - 100$$

Where:

ME (%) = Matrix effect in %

Area_A = Peak area in counts in solvent standard

Area_B = Peak area in counts in matrix standard

Calibration standards in solvent and matrix extract corresponding to 120% of the respective HIGH Level (spiking on powder) were chosen to determine the matrix effects. **Table 38** shows matrix effects for target transitions in the respective matrix extracts.

Table 38: Matrix effects in % of target transitions of the analytes within the scope in extracts of QuEChERS AO,A-QuEChERS and QuPPe AO

Analyte	MRM [m/z]	Extraction method	ME (%)		
QuEChERS-Compou	unds				
Avermectin B1a	891/305	QuEChERS	-7		
		A-QuEChERS	-15		
Emamectin B1a	887/82	QuEChERS	8		
		A-QuEChERS	1		
3-Hydroxycarbofuran	238/163	QuEChERS	-12		
		A-QuEChERS	-13		
Gamma-Cyhalothrin	467/225	QuEChERS	-8		
Fentin	351/120	QuEChERS	7		
		A-QuEChERS	-6		
Halovyfon	360/288	QuEChERS	3		
паюхуюр		A-QuEChERS	-12		
Diclofon	325/253	QuEChERS	6		
ысютор		A-QuEChERS	-15		
QuPPe-Compounds					
Amitrole	85/43	QuPPe AO	-18		
Nicotine	163/130	QuPPe AO	-32		
Cotinine	177/80	QuPPe AO	-46		
PTU	117/60	QuPPe AO	-31		
Diquat [M] ²⁺	92/84	QuPPe AO	6		
Diquat [M ²⁺ - H ⁺] ⁺	183/157	QuPPe AO	-87.6		
Diquat [M] ⁺ •	184/128	QuPPe AO	-93.9		
Topramezone	362/334	QuPPe AO	282		

7. Short summary

JRL-SRM

With the aim of checking whether highly toxic compounds can be effectively monitored in infant formulae for children up to 16 weeks of age and of running a pilot monitoring program of infant formulae from the market, a method was developed. The focus was on the analysis of compounds not amenable to multiresidue methods that show a high toxicity (low ADI-values), and for which the default MRL for infant formulae of 0.01 mg/kg is considered unsafe for children of the abovementioned age. Several additional compounds deemed as being of relevance to milk products were also included in the scope, irrespective of their toxicological profile. The following compounds were included in the study:

Compounds covered by QuEChERS and LC-MS/MS: Abamectin, Emamectin, Diclofop, Haloxyfop, Gamma-Cyhalothrin, 3-Hydroxycarbofuran and Fentin. <u>Additional</u>: Ethoxyquin-Dimer.

Compounds covered by QuPPe and LC-MS/MS: Amitrole, Nicotine, PTU, Diquat and Topramezone. <u>Additional</u>: Trifluoracetic acid, Triazole acetic acid, Triazole lactic acid, Triazole alanine, Chlorate, Perchlorate, Phosphonic acid, Thiocyanate, Paraquat and Melamine.

Recoveries of fentin and Toprametazone were low using CEN QuEChERS. The use of FA-QuEChERS, where acetonitrile with 1% FA and no citrate buffer salts is used, resulted in much higher recovery rates.

Action	When	Document Version
Initial Experiments	May – December 2019	
Further Validation Experiments	November 2019 – January 2020	
Observation document placed on-line	March 2020	V1
Updated version	March 2021	V2

Document History