

Quick Method for the Analysis of Residues of numerous Highly Polar Pesticides in Foods of Plant Origin involving Simultaneous Extraction with Methanol and LC-MS/MS Determination (QuPPe-Method)

Version 7.1 (Nov 2013, Document History, see page 434) Authors: M. Anastassiades; D. I. Kolberg; D. Mack; C. Wildgrube; I. Sigalov; D. Dörk

Scope and Short Description

A method is described for the residue analysis of very polar, non-QuEChERS-amenable, pesticides in foods of plant origin such as fruits (including dried fruits), vegetables, cereals and processed products thereof as well as honey.

Residues are extracted from the test portion following water adjustment and the addition of acidified methanol. The mixture is centrifuged, filtered and directly analyzed by LC-MS/MS. Various options for the simultaneous LC-MS/MS analysis of different combinations of pesticides are provided. Quantification is in most cases performed with the help of isotopically labeled (IL) analogues of the target analytes, which are used as internal standards (ISTDs). So far available, these IL-ISTDs are added directly to the test portion at the beginning of the procedure to compensate for any factors having an influence on the recovery-rates such as volume-deviations, analyte losses during the sample preparation as well as matrix-effects during measurement.

2. Apparatus and Consumables

2.1. Powerful sample processing equipment,

e.g. Stephan UM 5 or Retsch Grindomix GM 300.

2.2. 50 mL centrifuge tubes with screw caps,

e.g.: a) reusable 50 mL Teflon® centrifuge tubes with screw caps (e.g. Nalgene/Rochester, USA; Oakridge, article-no. 3114-0050) or b) disposable 50 mL centrifuge tubes (e.g. Sarstedt / Nümbrecht, Germany, 114x28 mm, PP, article-no. 62.548.004).

2.3. Automatic pipettes,

suitable for handling volumes of 10 to 100 µL, 200 to 1000 µL and 1 to 10 mL.

2.4. 10 mL solvent-dispenser,

for the acidified methanol (3.6).

2.5. Centrifuge,

suitable for the centrifuge tubes employed in the procedure (2.2) and capable of achieving > 2500 rpm.

2.6. Syringe filters,

e.g. Polyester filters 0.45 µm pore size.

2.7. Syringes

e.g. 2 or 5 mL disposable polypropylene syringes suitable for the above mentioned filters 2.6.

2.8. Autosampler vials,

suitable for LC auto-samplers,

Use plastic vials if pesticides that tend to interact with glass-surfaces are present (e.g. Paraquat, Diquat, Streptomycin and Glyphosate)¹.

Note:

- Such interaction with glass surfaces are more pronounced when solutions have low water content and low acidity.

2.9. Volumetric flask with stoppers,

for the preparation of stock and working solutions. E.g. 20 mL; 25 mL; 50 mL, 100 mL glass flasks. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. Paraquat, Diquat, Streptomycin and Glyphosate).

2.10. LC-MS/MS instrumentation,

equipped with ESI source and appropriate columns, see details in chapters 5.6.1 till 5.6.9.

¹The list of compounds requiring plastic vessels might not be comprehensive (this remark applies to the entire document)

Chemicals

Unless otherwise specified, use reagents of recognized analytical grade. Take every precaution to avoid possible contamination of water, solvents, sorbents, inorganic salts, etc.

- 3.1. Water (deionized)
- 3.2. Methanol (HPLC quality)
- 3.3. Acetonitrile (HPLC quality)
- 3.4. Formic acid (concentrated; > 95%)
- 3.5. Acetic Acid (concentrated; >98%)
- 3.6. Acidified methanol,

pipette 10 mL formic acid (3.4) in a 1000 mL volumetric flask and fill up to volume with methanol (3.2).

- 3.7. Citric acid monohydrate (p.a.)
- 3.8. Dimethylamine,

e.g. 40 % by Fluka (article-no. 38940).

- 3.9. Ammonium formate (p.a.)
- 3.10. Ammonium citrate tribasic, anhydrous (p.a.)
- 3.11. Sodium hydroxide (p.a.)
- 3.12. di-Sodiumtetraborate decahydrate (p.a.)
- 3.13. Dry ice,

technical grade can be used, but it should be periodically demonstrated not to contain any pesticides at relevant levels.

3.14. Pesticide Standards,

of known purity.

3.15. Pesticide stock solutions,

e.g. 1 mg/mL solutions of pesticide standards (3.14) in a water miscible solvent (e.g. water (3.1), methanol (3.2), acetonitrile (3.3) or mixtures thereof). See solvent-suggestions in **Table 14**. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. Paraquat, Diquat, Streptomycin and Glyphosate).

3.16. Pesticide working solutions / mixtures,

prepared at appropriate concentrations by diluting pesticide stock solutions (3.15) of one or more pesticides with water-miscible solvents as required for the spiking of samples in recovery experiments (5.4) or for the preparation of calibration standards (5.5). See suggestions in Table 14 in the Annex. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. Paraquat, Diquat, Streptomycin and Glyphosate).

3.17. Internal Standards (ISTDs),

see details in Table 15.

3.18. ISTD Stock solutions.

e.g. 1 mg/mL solutions of ISTDs (3.177) in a water miscible solvent (e.g. methanol, acetonitrile, water or mixtures thereof). For solvent-suggestions see Table 14. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. isotope labeled Paraquat, Diquat and Glyphosate as well as dihydrostreptomycin).

3.19. ISTD-working solution I (ISTD-WS I) for spiking samples prior to extraction,

prepared at appropriate concentrations by diluting ISTD stock solutions (3.18) of one or more ISTDs with water-miscible solvents. Suggestions for solvents are shown in **Table 14** and suggestions for the concentrations in Table 16. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. isotope labeled Paraquat, Diquat and Glyphosate as well as dihydrostreptomycin).

3.20. ISTD-working solution II (ISTD-WS II) for preparation of calibration standards,

prepared at appropriate concentrations by diluting ISTD working solution I (3.19) with water-miscible solvents. Suggestions for solvents are shown in **Table 14** and for concentrations in **Table 16**. Use plastic flasks and stoppers if pesticides that tend to interact with glass-surfaces are present (e.g. isotope labeled Paraquat, Diquat and Glyphosate as well as dihydrostreptomycin). See also sub-note 3 in Table 1.

3.21. LC-MS/MS mobile phases,

see details in chapters 5.6.1 till 5.6.9.

4. Disclaimer

This method refers to several trade name products and instruments which are commercially available and suitable for the described procedure. This information is given for the convenience of the users of this method and does not constitute an endorsement by the EURL of the products named. The application of this method may involve hazardous materials, operations and equipment. It is the responsibility of the users of this method to establish appropriate safety and health practices prior to use.

5. Procedure

5.1. Sample preparation

To obtain representative test-portions from the laboratory sample, proceed as required by the respective regulations and guidelines. For fruits and vegetables cryogenic milling (e.g. using dry ice) is to be preferred to minimize degradations, reduce particle size and improve homogeneity.

5.1.1. For dried fruits and similar commodities (< 30 % water content) the following procedure is proposed: Add 850 g of cold water to 500 g frozen dried fruits and homogenize the mixture using a strong mixer (2.1), if possible with addition of dry ice (3.13). 13.5 g of this homogenate will correspond to 5 g sample.

5.2. Extraction / Centrifugation / Filtration

5.2.1. Weigh a representative portion (m_a) of the sample homogenate (**5.1**) into a 50 mL centrifuge tube (**2.2**). In case of fresh fruits and vegetables as well as juices take 10 g \pm 0.1 g of the homogenized sample. In case of dried fruits, dried vegetables, dried mushrooms take 5 g \pm 0.05 g or 13.5 g \pm 0.1 g of the re-hydrated and homogenized material according to **5.1.1** (corresponding to 5 g sample). In case of cereals, dried pulses and honey also take 5 g \pm 0.05 g.

Notes:

- Smaller sample portions may have to be used for extract-rich commodities, such as spices or fermented products, or commodities with very high water absorbing capacity not allowing proper extraction.
- 5.2.2. Add water (3.1) to a content of ca. 10 g in total according to the indications in **Table 17.**

Notes:

- No water adjustment is needed where re-hydrated commodities (5.1.1) are employed.
- Where no ISTDs are used or where they are added after extract aliquotation, water adjustment is essential. Where the appropriate ISTDs are employed before any aliquotation has taken place water adjustment is less critical and can be skipped for commodities containing ≥80% water (see **Table 17**)
- 5.2.3. Add 10 mL acidified methanol (3.6) and 50 μ L of the ISTD-WS I (3.19) containing isotopically labeled analogues of one or more of the analytes of interest (added ISTD mass = m_{ISTD}^{sample}).

Notes:

- The resulting extract volume, taking into account the natural water content of the sample and the water added in **5.2.2**, should be ca. 20 mL (corresponds to ca. 0.5 g sample per mL extract if 10 g sample is employed for extraction).
- For screening purposes the ISTD can be alternatively added to a sample extract aliquot (e.g. 1 mL, see **5.2.8**), assuming that 1 mL extract corresponds to exactly 0.5 g sample equivalents. This way the added amount of ISTD per sample can be drastically reduced (e.g. 20-fold if added to 1 mL extract). The ISTD added at this step will compensate for matrix effects including retention-time shifts. The quantitative result should however be considered as tentative. For more accuracy samples should be re-analyzed with the ISTD being added in step **5.2.3**. Keep in mind that the final volume of the extract will deviate from 20 mL if water is not adjusted and additionally due to the ca. 2.5% volume contraction occurring when methanol is mixed with water. For water volume adjustment see **Table 17**.
- 5.2.4. Close the tube and shake vigorously for 1 min by hand or for 5-20 minutes by a mechanical shaker.

Notes:

- In case of dry products the 1 minute shaking is to be followed by a soaking period of 10 minutes and a subsequent second 1 minute vigorous shaking. Where mechanical shaking is employed no soaking period for dry commodities is necessary.
- 5.2.5. For **Paraquat and Diquat** the 1 minute shaking is followed by a thermal treatment of 15 minutes at 80 °C in a water bath. Then shake again for 1 minute and wait for the sample to cool down to room temperature before centrifuging.

Notes:

- 1 minute extractions at room temperature with methanol containing 1% formic acid are well suitable paraquat and diquat screening. 15-minute extractions at 80 °C using the same extraction solvent were shown to provide quantitative extraction yields of incurred diquat and paraquat residues in wheat and potatoes. Incurred diquat residues in **Lentils**, required stronger extraction conditions with MeOH/aqueous HCl 0,1M (1:1) using the same volume, extraction temperature and extraction time as described above².
- 5.2.6. Centrifuge (e.g. for 5 min at >2500 rpm).
- 5.2.7. Filter an aliquot of the extract (e.g. 3 mL) through a syringe filter (2.6) into a sealable storage vessel.

² Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses.

5.2.8.Transfer, as required, one or more aliquots (e.g. 1 mL each) of the filtered extract into auto-sampler vials (2.8)

Note for 5.2.7 and 5.2.8:

- Use plastic storage vessels/vials if pesticides that tend to interact with glass-surfaces are present (e.g. isotope labeled Paraquat, Diquat and Glyphosate as well as dihydrostreptomycin).

5.3. Blank extracts

Using suitable blank commodities (not containing any detectable residues of the analytes of interest), proceed sample preparation exactly as described in **5.2** but **SKIP THE ADDITION OF ISTDs.**

5.4. Recovery experiments

Weigh an appropriate portion (see **5.2.1**) of a blank commodity homogenate into a 50 mL centrifuge tube (**2.2**) and spike it with a suitable pesticide working solution (**3.16** and **Table 14**). Spike directly to the matrix, prior to any water or solvent addition. Use small volumes of pesticide working solutions (e.g. 50-300 μL), to avoid too strong dilution. Conduct sample preparation exactly as described in **5.2**.

5.5. Preparation of calibration standards

5.5.1. Solvent-based calibration standards

An exemplary pipetting scheme for the preparation of solvent-based calibration standards is shown in **Ta-ble 1**.

The calculation of the mass-fraction W_R of the pesticide in the sample, when ISTD is used, is shown in **5.7.1**.

Note:

- Where solvent-based calibrations are used the use of IL-ISTDs for quantification is essential as the ISTD compensates for any matrix-related signal suppressions / enhancements.

5.5.2. Matrix matched calibration standards

Transfer suitable aliquots of the blank extract (5.3) to auto-sampler vials and proceed as shown in **Table 1**. The calculation of the mass-fraction W_R of the pesticide in the sample using matrix-matched calibration standards, with and without the use of IL-ISTD, is shown in **5.7.1** and **5.7.2.1** respectively.

Table 1: Exemplary pipetting scheme for the preparation of calibration standards

					Calibration standards					
		Solvent based (5.5.1)			Matrix-matched (5.5.2)					
		using ISTD ⁴			without ISTD ⁵			using ISTD ⁴		
Calibration level in µg pesticide /ml in µg pesticide/ "IS	OR	0.05 ⁶	0.1	0.25	0.05	0.1	0.25	0.05	0.1	0.25
Blank extract (5.	3)	-	-	-	900 μL	900 µL	900 µL	850 µL	850 µL	850 µL
1:1 (v/v) mix of wand acidified Me		900 µL	850 µL	900 µL	50 μL	-	50 μL	50 μL	-	50 µL
Pesticide work-	1 μg/mL	50 μL	100 µL	-	50 μL	100 μL	-	50 μL	100 μL	-
(3.16) ²	5 μg/mL	-	-	50 μL	-	-	50 μL	-	-	50 μL
ISTD-WS II (3.20) ^{1,3}		50 μL	50 μL	50 μL	-	-	-	50 μL	50 μL	50 μL
Total volume		1000 µL	1000 μL	1000 μL	1000 µL	1000 μL	1000 μL	1000 µL	1000 μL	1000 μL

¹ One ISTD portion would correspond to the ISTD mass contained in 50 μL ISTD-WS II (the volume added to each calibration standard).

² The concentration of the pesticide working solution(s) should be sufficiently high to avoid excessive dilution of the blank extract which would result in matrix effect deviations.

³For calibration standards of 1 mL it is recommended to prepare the ISTD-WS II **(3.20)** by diluting 20-fold the ISTD-WS I **(3.19)**. The same volume and pipette as in **5.2.3** can then be used for the preparation of the calibration standards.

⁴ When employing IL-ISTDs matrix-matching and volume adjustments are of less importance as the ISTD compensates for any matrix-related signal suppressions / enhancements. Also solvent-based calibrations can be used here. Important is that a) the mass ratio of pesticide and ISTD in the respective calibration standards and b) the ratio between the ISTD mass added to the sample (5.2.3) and the ISTD mass added to the calibration standard(s) (5.5.1 and 5.5.2) is known and recorded. For convenience the latter mass ratio should be kept constant throughout all calibration levels (e.g. at 20:1 when preparing calibration standards of 1 mL).

⁴ Where IL-ISTDs are <u>not</u> available/employed, matrix-matching via matrix-matched standards (**Table 1**) or the standard additions approach (**5.5.3**) are particularly important to compensate for matrix effects in measurement. In both cases the total volume of the sample extracts is assumed to be exactly 20mL.

⁶ The calibration level of 0.05 corresponds to 0.1 mg pesticide /kg sample, when using 10 g test portions, or to 0.2 mg/kg sample when using 5 g test portions.

5.5.3. Standard-Additions-Approach

Where no appropriate ISTDs are available the method of standard additions is a very effective approach for compensating matrix-induced enhancement or suppression phenomena. As this procedure involves a linear extrapolation it is mandatory that pesticide concentrations and detection signals show a linear relationship throughout the relevant concentration range. The procedure furthermore requires knowledge of the approximate (estimated) residue level in the sample ($w_{R(approx)}$). This info is derived from a preliminary analysis.

Prepare 4 equal portions of the final extract and spike 3 of them with increasing amounts of analyte. The amounts to be added should be chosen in such a way to ensure linearity.

Prepare a working solution (3.16) of the analyte at a concentration level where 50 or 100 μ L of the solution contain the lowest amount of analyte to be added.

Example A: Vial 1) no addition; vial 2) 0.5 x $w_{R(approx)}$, vial 3) 1 x $w_{R(approx)}$, and vial 4) 1.5 x $w_{R(approx)}$, Example B: Vial 1) no addition; vial 2) 1 x $w_{R(approx)}$, vial 3) 2 x $w_{R(approx)}$, and vial 4) 3 x $w_{R(approx)}$.

Adjust the volume within all vials by adding the corresponding solvent amounts.

Table 2 shows an example according to Example B. The calculation of the mass fraction of the pesticide in the sample w_R is shown in **5.7.2.2**.

Table 2 : Exemplary pipetting scheme of a standard additions approach (for a sample extract containing 0.5 g sample equivalents per mL and an estimated residue level ($w_{R(approx)}$) of 0,5 mg/kg = 0.25 μ g/1000 μ l

Additions	Vial 1	Vial 2	Vial 3	Vial 4
Volume of sample extract	1000 μl (= 0.5 g sample)	1000 μl (= 0.5 g sample)	1000 μl (= 0.5 g sample)	1000 µl (= 0.5 g sample)
ISTD	none	none	none	none
Added volume of pesticide working solution containing 5 µg/ml (3.16)	-	50 µl	100 µl	150 µl
Resulting mass ($m_{\it pest}^{\it std~add}$) of pesticide added to each vial		0.25 µg	0.5 µg	0.75 μg
Volume of solvent	150 µl	100 μΙ	50 μΙ	-
Final volume	1150 µl	1150 μΙ	1150 µl	1150 µl

5.6. LC-MS/MS Measurement Conditions

Any suitable LC and MS/MS conditions may be used. Below you will find some exemplary instrument measurement conditions. An overview of the LC-MS/MS conditions proposed within this document is given in Table 3:

Table 3: Overview and scope of the methods proposed within this document for the QuPPe method:

	M 1.1	M 1.2	M 1.3	M 2	М 3	M 4	M 5	M 6	M 7
	Anion Exchange (AS-11)	Anion Exchange (AS11-HC)	Carbon (Hypercarb)	Normal Phase (Obe- lisc-R)	Normal Phase (Obelisc-R)	Normal Phase (Obelisc-R)	Normal Phase (PFP)	Normal Phase (Obelisc-R)	Normal Phase (Trinity)
Ethephon	✓	✓	✓						
HEPA	✓	✓	✓						
Glufosinate	✓	✓	✓						
N-Acetyl-Glufosinate	✓	✓	✓						
MPPA	✓	✓	✓						
Glyphosate	✓	✓	✓						
AMPA	✓	✓	✓						
Phosphonic acid	✓	✓	✓						
N-Acetyl-AMPA		✓	✓						
Fosetyl-Al		✓	✓	✓					
Maleic hydazide			✓	✓					
Perchlorate			✓	✓					
Chlorate			✓						
Amitrole					✓				
ETU					✓		✓		
PTU					✓		✓		
Cyromazin					✓	✓			
Trimesium					✓	✓			
Daminozide					✓	✓			
Chlormequat					✓	✓	✓		
Mepiquat					✓	✓	✓		
Difenzoquat					✓	✓	✓		
Diquat						✓			
Paraquat						✓			
N,N-Dimethylhydrazine						✓			
Nereistoxine						✓			
Streptomycin								✓	
Kasugamycin								✓	
Morpholin									✓
Diethanolamine									✓
Triethanolamine									✓

5.6.1. Method 1.1 (for "Glyphosate & Co.")

Table 4: Proposed LC-MS/MS conditions for Ethephon, HEPA (ethephon metabolite), Glyphosat, AMPA (glyphosate metabolite), Glufosinate, MPPA (glufosinate metabolite), N-Acetyl-Glufosinate (glufosinate metabolite), phosphonic acid

Instrument parameters	Conditions					
Ionization mode	ESI neg					
Column/temperature (see notes)	Dionex IonPac AS 11 2 x 250) mm (P/N 44077); 40°C				
Pre-column	Dionex IonPac AG11 2 x 50 r	Dionex IonPac AG11 2 x 50 mm (P/N 44079)				
Pre-filters	e.g. Supelco column saver 2.0	μm Filter (optional)				
Eluent A	Water (3.1)					
Eluent B	Note: You will need ca. 0.5 mL DMA	1 mM citric acid in water adjusted to pH 11 with dimethylamine (DMA) Note: You will need ca. 0.5 mL DMA solution for 500 mL 1 mM citric acid in water Make sure your eluent filters can handle alkaline solvents (see notes)!!				
Gradient	%A Flow [mL/min]	Time [min]				
	100 0.3	0				
	50 0.3	8				
	50 0.3	15				
	100 0.3 100 0.3	15.1 23				
	100 0.3 23					
Injection volume	10-20 μL (Note: in case of anal depending on the instrument)	yzing only ethephon 5 µL may be enough -				
Calibration standards and levels	e.g. 0.05 or 0.1 µg/ISTD-portion	+ one level at the reporting limit				
Acquired mass transitions (m/z)	Compound	Mass Transitions (m/z)				
	Glyphosate Glyphosate ¹³ C2 ¹⁵ N (ISTD)	168/63, 168/124, 168/150, 168/81 171/63				
	AMPA** AMPA ¹³ C ¹⁵ N (ISTD)	110/63, 110/79, 110/81 112/63				
	Ethephon Ethephon D4 (ISTD)	143/107, 143/79, 145/107 147/111				
	HEPA HEPA D4 (ISTD)	125/79, 125/95, 125/63 129/79				
	Glufosinate D3 (ISTD)	180/63, 180/136, 180/85, 180/95 183/63				
	N-Acetyl-Glufosinate N-Acetyl-Glufosinate D3 (ISTD)	222/63, 222/59, 222/136 225/63				
	MPPA MPPA D3 (ISTD)	151/63, 151/107, 151/133 154/63				
	Phosphonic acid***	81/63, 81/81				

AMPA: Aminomethylphosphonic acid; MPPA: 3-Methylphosphinicopropionic acid; HEPA: 2-Hydroxyethylphosphonic acid (= ethephon-hydroxy),

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).

^{**} In the case of AMPA the mass transition 110/81 is interfered by Fosetyl

^{***}a) Residue Definition (EU): Sum fosetyl + phosphonic acid and their salts, expressed as fosetyl;

b) no isotope labeled ISTD is available for phosphonic acid;

c) For several commodities it is beneficial to inject smaller volumes (e.g. 1-2 μL) for the measurement of phosphonic acid. Alternatively QuPPe extracts can be diluted 10-fold.

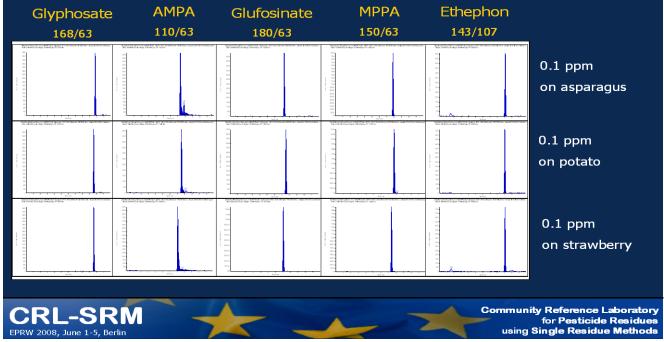
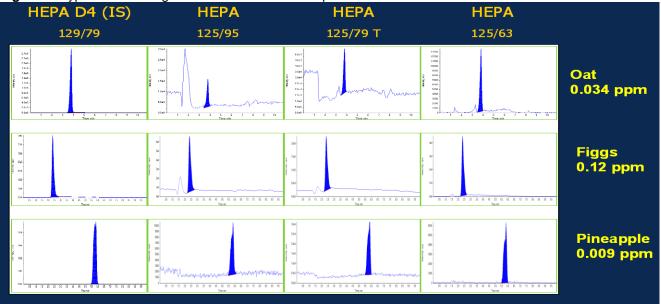



Figure 2: Typical chromatograms of HEPA in real samples

5.6.2. Method 1.2 (for "Glyphosate & Co.")

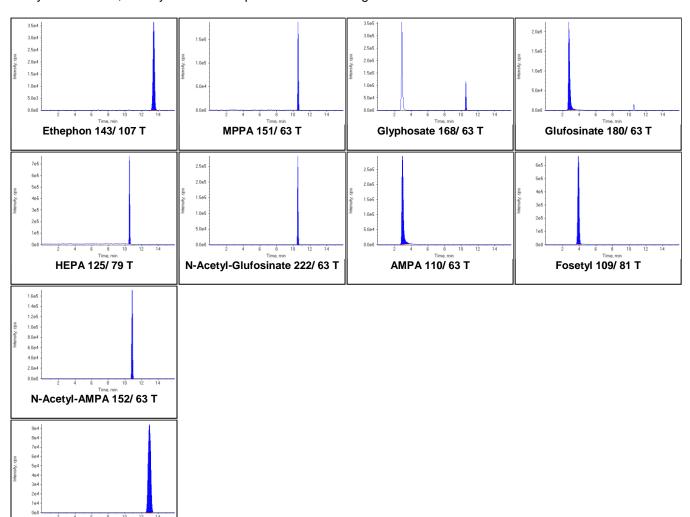
Table 5: Proposed LC-MS/MS conditions for Ethephon, HEPA (ethephon metabolite), Glyphosat, AMPA (glyphosate metabolite), Glufosinate, MPPA (glufosinate metabolite), N-Acetyl-Glufosinate (glufosinate metabolite), Fosetyl-Al, N-Acetyl-AMPA and Phosphonic acid.

Instrument parameters	Conditions			
Ionization mode	ESI neg			
Column/temperature (see also notes below)	Dionex IonPac AS 11- HC 2 x 250 mm (P/N 052961); 40°C			
Pre-column	Dionex IonPac AG11- HC 2 x 50 mm (P/N 052963)			
Pre-filters	e.g. Supelco column saver 2.0 µ	m Filter (optional)		
Eluent A	Water (3.1)			
Eluent B	1 mM tribasic ammonium citrate	in Water		
Gradient	%A Flow [mL/min] 100 0.3 0 0.3 0 0.3 100 0.3 100 0.3	Time [min] 0 8 16 16.1 23		
Injection volume	10 μL			
Calibration standards and levels	e.g. 0.05 or 0.1 µg/ISTD-portion*	+ one level at the reporting limit		
Acquired mass transitions (m/z)	Compound	Mass Transitions (m/z)		
	Glyphosate Glyphosate ¹³ C ₂ ¹⁵ N (ISTD)	168/63, 168/124, 168/150, 168/81 171/63		
	AMPA** AMPA ¹³ C ¹⁵ N (ISTD)	110/63, 110/79, 110/81 112/63		
	N-Acetyl-AMPA	152/63, 152/79, 152/110		
	Ethephon	143/107, 143/79, 145/107 147/111		
	Ethephon D4 (ISTD)	147/111		
	HEPA D4 (ISTD)	147/111 125/79, 125/95, 125/63 129/79		
	HEPA	125/79, 125/95, 125/63		
	HEPA HEPA D4 (ISTD) Glufosinate	125/79, 125/95, 125/63 129/79 180/63, 180/136, 180/85, 180/95		
	HEPA HEPA D4 (ISTD) Glufosinate Glufosinate D3 (ISTD) N-Acetyl-Glufosinate	125/79, 125/95, 125/63 129/79 180/63, 180/136, 180/85, 180/95 183/63 222/63, 222/59, 222/136		
	HEPA HEPA D4 (ISTD) Glufosinate Glufosinate D3 (ISTD) N-Acetyl-Glufosinate N-Acetyl-Glufosinate D3 (ISTD) MPPA	125/79, 125/95, 125/63 129/79 180/63, 180/136, 180/85, 180/95 183/63 222/63, 222/59, 222/136 225/63 151/63, 151/107, 151/133		

AMPA: Aminomethylphosphonic acid; MPPA: 3-Methylphosphinicopropionic acid; HEPA: 2-Hydroxyethylphosphonic acid (= ethephon-hydroxy)

Note: Using this method some compounds (e.g. Glyphosate) in some commodities tend to give two sharp peaks. The ISTD typically behaves equally, so that quantification with any of the two peaks remains accurate

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).


^{**} In the case of AMPA the mass transition 110/81 is interfered by Fosetyl

^{***} See comments on phosphonic acid under Method 1.1

Phosphonic acid 81/63

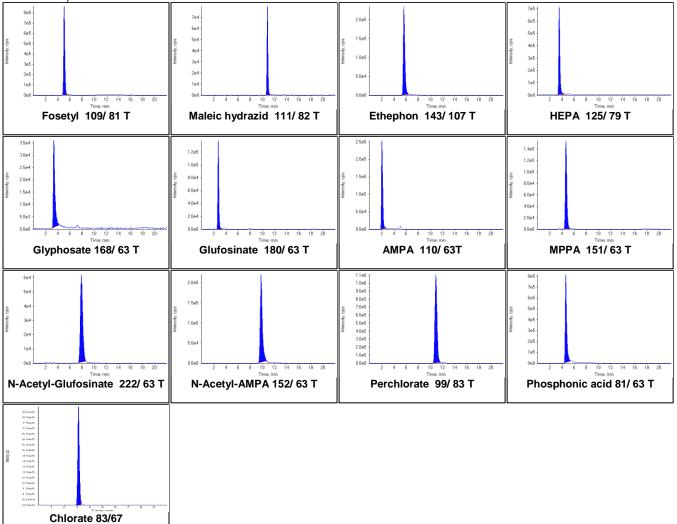
Figure 3: Typical chromatograms of Ethephon, HEPA, Glyphosat, AMPA, Glufosinate, MPPA, N-Acetyl-AMPA, N-Acetyl-Glufosinate, Fosetyl-Al and Phosphoric acid at 0.1 mg/L in MeOH with 1% formic acid.

5.6.3. Method 1.3 (for "Glyphosate & Co.")

Table 6: Proposed LC-MS/MS conditions for Ethephon, HEPA (ethephon metabolite), Glyphosat, AMPA, N-Acetyl-AMPA (glyphosate metabolites), Glufosinate, MPPA (glufosinate metabolite), N-Acetyl-Glufosinate (glufosinate metabolite), Fosetyl-Al, Phosphoric acid (Fosetyl metabolite), Maleic Hydrazide, Perchlorate and Chlorate.

Instrument parameters	Conditions	Conditions				
Ionization mode	ESI neg					
Column/temperature	Hypercarb	2.1 x 100 mm 5 μn	n (P/N 35005-1021	30); 40°C		
Pre-column	Hypercarb G	Hypercarb Guard 2.1 x 10 mm 5 μm (P/N 35005-102101)				
Pre-filters	e.g. Supelco	e.g. Supelco column saver 2.0 µm Filter (optional)				
Eluent A	1% acetic aci	d in water + 5% Me	ОН			
Eluent B	1% acetic aci	d in MeOH				
Gradient	%A 100 70 70 70 10 10 10	Flow [mL/min] 0.2 0.2 0.4 0.4 0.4 0.4 0.2	Time [min] 0 10 11 18 19 22 22.1			
	100	0.2	30			
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or 0	.1 μg/ISTD-portion* +	+ one level at the reporting limit			
Acquired mass transitions (m/z)	Compound		Mass Transitions (m/z)			
	Glyphosate Glyphosate ¹³ C2 ¹⁵ N (ISTD) AMPA**		168/63, 168/124, 168/150, 168/81 171/63 110/63, 110/79, 110/81 112/63			
	AMPA ¹³ C ¹⁵ N (ISTD) N-Acetyl-AMPA		152/63, 152/79, 152/110			
	Ethephon Ethephon D4 (ISTD)		143/107, 143/79, 145/107 147/111			
	HEPA HEPA D4 (ISTD)		125/79, 125/95, 125/63 129/79			
	Glufosinate Glufosinate D3 (ISTD)		180/63, 180/136, 180/85, 180/95 183/63			
	N-Acetyl-Glufosinate N-Acetyl-Glufosinate D3 (ISTD)		222/63, 222/59, 222/136 225/63			
	MPPA D3 (ISTD)	151/63, 151/107, 151/133 154/63			
	Fosetyl-Al (detection Fosetyl-Al D15 (l	ISTD)	109/81, 109/63 114/82 (D5-fosetyl)			
	Phosphonic acid		81/63, 81/81			
	Maleic hydrazide Maleic hydrazide		111/82, 111/42, 111/55, 113/42	111/83		
	Perchlorate ¹⁸ O ₄	(ISTD)	99/83, 101/85 107/89			
	Chlorate****		83/67, 85/69			

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).


^{**} In the case of AMPA the mass transition 110/81 is interfered by Fosetyl

^{***} See comments on phosphonic acid under Method 1.1

^{****} For Chlorate it is recommended to dilute the QuPPe extracts 10-fold, the same procedure is also recommended for Perchlorate and Phosphonic acid

Figure 4: Chromatograms of Ethephon, HEPA, Glyphosat, AMPA, Glufosinate, MPPA, N-Acetyl-AMPA, N-Acetyl-Glufosinate, Fosetyl-Al, Maleic Hydrazide, Phosphoric acid, Perchlorate and Chlorate at 0.1 mg/L in MeOH (with 1% formic acid).

EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

Practical care and use considerations concerning the columns of Methods 1.1-1.3:

Column Coding: A: Ionpac AS 11 (method 1.1); B: Ionpac AS 11-HC (method 1.2); C: Hypercarb (method 1.3)

I. Conditioning/Reconditioning of columns

- 1. <u>Columns A and B</u> (e.g. before first use, after long storage (e.g. >2 weeks), after injection of 50-100 sample extracts for column A or 100-200 extracts for column B):
 - a. Flush column for 30 minutes with 100 mmol aqueous Borax solution (7,62 g di-sodium tetraborate decahydrate in 200 mL water) at 0.3 mL/min OR Flush for 1 hour with 30 mM NaOH (240 mg NaOH in 200 mL water) at 0.3 mL/min
 - b. Flush column for 30 minutes with **Eluent A** (water) at 0.3 mL/min
 - c. Run system 3-4 times with full gradient (inject standards in matrix)

NOTE: When flushing NaOH or Borax solution through the column make sure that it will go directly into waste and not to the MS ion source!.

- 2. Column C before <u>first use</u> of a column or pre-column:
 - a. Inject 10-20 times spinach QuPPe extract, if possible inject 20 μL
 - b. Inject 10-20 times Grape Skin Extract, available as Dietary Supplement (100 mg in 20 mL MeOH + 1% FA-H2O 1:1), if possible inject 20 μL

II. Storage of columns:

1. Columns A and B:

- a. If to be stored for short periods (<2 weeks), columns can be put aside after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject standards in matrix) before starting the sequence.
- b. If to be stored for longer periods (e.g. >2 months) recondition the column as described under I.1.a-c

2. Column C:

- a. Following normal operation the columns can be stored directly after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject standards in matrix) before starting the sequence.
- b. If to be stored for longer periods (e.g. >2 months) it is recommended to recondition the column as described under I.2.a-c.

III. Pre-filters:

1. Columns A, B and C:

- a. If pre-filters are used exchange them as soon as backpressure increases significantly.
- b. For practical and convenience reasons it is recommended to exchange pre-filters when performing other maintenance operations such as reconditioning or pre-column exchange.

NOTE: Losses of glyphosate, that could be clearly linked to interactions with a dirty pre-filter, have been once observed.

IV. Pre-columns (guard columns):

1. Columns A, B and C:

- a. The pre-column should be exchanged as soon as a clear deterioration of the separation performance (worsening of peak-shape) is noticed. The pre-column of method 1.1. needs to be exchanged more often than that of 1.2 and that of method 1.3 clearly less often.
- b. If after pre-filter exchange (see above) the pressure does not come back to normal levels, the frit of the precolumn should be exchanged.

V. LC-system specifications for method 1.1:

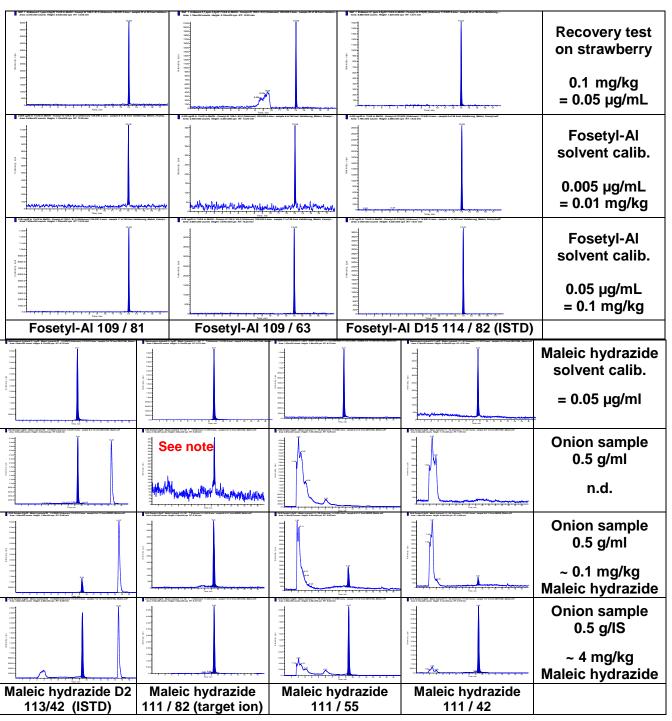
As the pH of the mobile phase is quite high, it is recommendable to <u>use alkali-compatible components</u>, e.g. metal frits instead of silica frits in the Eluent B reservoir; borosilicate 3.3 bottles instead of glass bottles for eluent B; rotor-seals from alkali-persistent materials, such as PEEK (polyetherketone) or Tefzel, rather than Vespel.

For further information on the storage and cleanup of column B see: http://www.dionex.com/en-us/webdocs/113497-Man-065463-03-lonPac-AS11-HC-4um-Nov12.pdf

5.6.4. Method 2 (for Fosetyl and Maleic Hydrazide):

Table 7: Proposed LC-MS/MS conditions for Fosetyl-Al, Maleic Hydrazide and Perchlorate

Instrument parameters					
The second secon					
Ionization mode	ESI neg				
Column/temperature	Obelisc R 2.1 x 150 mm 5 µm 100 Å; (SIELC; OR-21.150.0510)				
Pre-filters	e.g. Supelco	column saver 2.0 µm F	ilter		
Pre-column	Obelisc R 2.1 (SIELC; OR-2	x 10mm 5 μm 21.G.0510)			
Eluent A	50 mmol NH ₄ use brown gla	-formate in water + 0.1 ass bottles	% formic acid		
Eluent B	Acetonitrile				
Gradient	%A	Flow [mL/min]	Time [min]		
	3	0.3	0		
	10	0.3	6		
	70	0.5	15		
	70	0.5	18		
	3	0.5	18.1		
	3	0.5	28		
Injection volume	5 µL				
Calibration standards and levels	e.g. 0.05 or 0.1 µg/ISTD portion*, + one level at the reporting limit For maleic hydrazide (MH) an additional level at 1 or 2 µg/ml may be useful as well, due to high residue levels; consider that MH is typically only relevant for potatoes and crops of the leek family (onions etc.)				
Acquired mass transitions	Compound		Mass Transitions (m/z)		
	Fosetyl-Al (de Fosetyl-Al D1	etected as fosetyl) 5 (ISTD)	109/81, 109/63 114/82 (D5-fosetyl)		
	Maleic hydrazide Maleic hydrazide D2 (ISTD)		111/82, 111/42, 111/55, 111/83 113/42		
***	Perchlorate 99/83, 101/85 Perchlorate ¹⁸ O ₄ (ISTD) 107/89			(T.I. 4)	


^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).

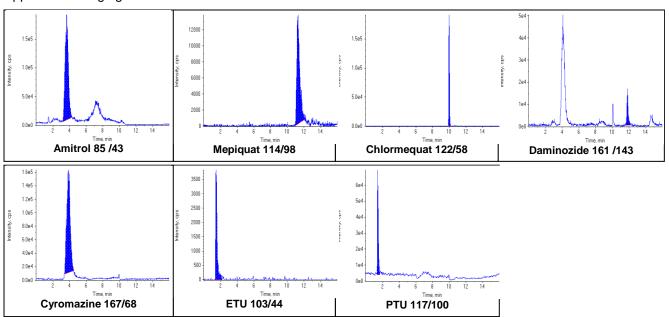
Note: It should be kept in mind that standards of isotopically labeled pesticides may contain small amounts of native (unlabelled) compounds as impurities. Typically these impurities are at low levels, so that the added amounts of native-pesticides resulting from the addition of ISTDs are insignificant. In the case of maleic hydrazide (MH), however the amount of ISTD added is comparably high due to the low detection sensitivity achieved for this compound. Assuming native MH being contained as impurity in D2-MH at 0.25 % the resulting concentration of native MH following the addition of 20 µg D2-MH to 10 g sample will be at 0.005 mg /kg sample. This aspect is to be considered in the selection of Reporting Limits as well as when judging residue levels in samples having low MRLs (e.g. baby food) or organic food.

For Perchlorate better run Method 1.3

Figure 5: Typical chromatograms of Fosetyl-Al

5.6.5. Method 3 (for Amitrole & Co)

Table 8: Proposed LC-MS/MS conditions for Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU, Trimesium, Cyromazine


Instrument parameters	Conditions					
Ionisation mode	ESI pos	ESI pos				
Column/temperature	Obelisc R 2.1	x 150 mm 5 µm 100	Å (SIELC; OR-21.15	50.0510); 40°C		
Pre-column	Obelisc R 2.1 x 10 mm 5 µm (SIELC; OR-21.G.0510)					
Pre-filters	e.g. Supelco	column saver 2.0 µm	Filter			
Eluent A	5 mmol NH ₄ -f Use brown gla	formate in water ass bottles				
Eluent B	5 mmol NH ₄ -f	ormate Acetonitrile/V	Vater 95 :5 (v/v)			
Gradient	%A	Flow [mL/min]	Time [min]			
	2	0.4	0			
	2	0.4	2.5			
	80	0.4	5			
	80	0.4	11			
	2	0.4	11.1			
	2	0.4	18			
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or 0	.1 μg/ISTD portion* +	one level at the repo	orting limit		
Acquired mass transitions	Compound		Mass Transitions (m/z)			
	Amitrole Amitrole ¹⁵ N (ISTD) Amitrole ¹⁵ N ₂ / ¹³ C ₂ (ISTD)		85/57, 85/43 86/43 89/44			
	Chlormequat Chlormequat D4 (ISTD)		122/58, 122/63, 124/58 126/58			
	Mepiquat Mepiquat D3 (ISTD):		114/98, 114/58 117/101			
	Daminozide Daminozide I	D6 (ISTD):	161/143, 161/101, 161/61, 161/115 167/149			
	Cyromazine Cyromazine D4 (ISTD):		167/85, 167/125, 167/68 171/86			
	ETU ETU D4 (ISTI	D):	103/44, 103/60, 103/86 107/48			
	PTU PTU D6 (ISTI	D)	117/100, 117/58, 117/60 123/64			
	Trimethylsulfo	onium ently available	77/62, 77/47 -			
	Difenzoquat No ISTD currently available		249/77, 249/129 -			

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also **Table 1**). ETU: Ethylenethiourea; PTU: Propylenethiourea; Trimesium=Trimethylsulfonium-cation

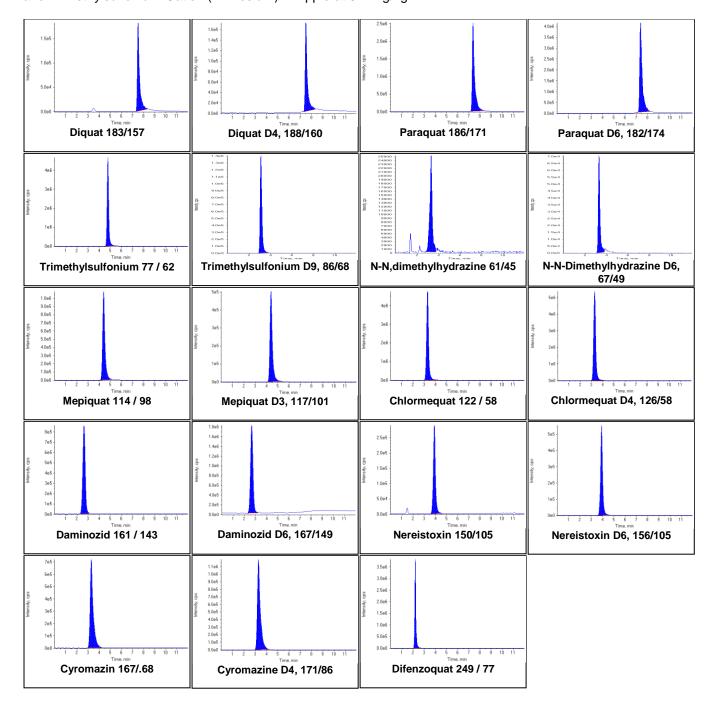
Note: For Paraquat, Diquat, Trimethylsulfonium and N,N-Dimethylhydrazine better run Method 4 (5.6.6)

Figure 7: Typical chromatograms of Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU and Cyromazine in Apple at 0.01 mg/kg

5.6.6. Method 4 (for "Quats & Co")

Table 9: Proposed LC-MS/MS conditions Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide N,N-Dimethylhydrazine, Cyromazine, Trimethylsulfonium (counterion of Glyphosate) and Nereistoxin.

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column/temperature	Obelisc R 2.1 x 150 mm 5 µm 1	00 Å (SIELC; OR-21.150.0510); 40°C			
Pre-filters	e.g. Supelco column saver 2.0 µm Filter				
Pre-column	Obelisc R 2.1 x 10 mm 5 µm (SIELC; OR-21.G.0510)				
Eluent A	20 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid), for this mix 1.8 mL formic acid (3.4) with 500 mL 20 mmol NH ₄ -formate in water Use brown glass bottles!				
Eluent B	Acetonitrile				
Gradient	%A Flow [mL/min] 20 0.4 80 0.4 80 0.4 20 0.4 20 0.4	Time [min] 0 4 12 12.1 20			
Injection volume	10 μL				
Calibration standards and levels	e.g. 0.05 or 0.1 µg/ISTD portion* + one level at the reporting limit (use plastic vials if Paraquat and Diquat are within your scope!)				
Acquired mass transitions	Compound	Mass Transitions (m/z)			
	Diquat** Diquat D4 (ISTD):	184/128, 183/157, 184/156 188/160			
	Paraquat** Paraquat D6 (ISTD):	186/171, 171/77, 171/155 192/174			
	Chlormequat D4 (ISTD):	122/58, 122/63, 124/58 126/58			
	Mepiquat D3 (ISTD):	114/98, 114/58 117/101			
	Daminozide D6 (ISTD):	161/143, 161/101, 161/61, 161/115 167/149			
	N,N-Dimethylhydrazine N,N-Dimethylhydrazine D6	61/44, 61/45 67/49			
	Cyromazine Cyromazine D4 (ISTD):	167/85, 167/125, 167/68 171/86			
	Trimethylsulfonium Trimethylsulfonium D9	77/62, 77/47 <mark>86/68</mark>			
	Nereistoxin Nereistoxin D6	150/105, 150/61, 150/71 156/105			
	Difenzoquat No ISTD currently available	249/77, 249/129 -			


^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).

Note: For ETU, PTU and Amitrole better run Method 3 (**5.6.5**) or Method 5 (**5.6.7**), for Morpholin, Diethanolamine (DEA) and Triethanolamine (TEA) better run Method 7 (**5.6.9**). As DEA converts to Morpholine in the ion source, chromatographic separation of these two is paramount. With Method 4 these two peaks do not sufficiently separate.

^{**} Diquat and Paraquat require special extraction conditions (see 5.2.5)

Figure 8: Typical chromatograms of Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide, N,N-Dimethylhydrazine and Trimethylsulfonium-Cation (Trimesium) in Apple at 0.1 mg/kg

5.6.7. Method 5 (alternative method for Chlormequat and Mepiquat)

Table 10: Proposed alternative LC-MS/MS conditions for Chlormequat and Mepiquat

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column/temperature	MonoChrom M	MS 100x2 mm; 5	μm (Varian); at 4	40°C	
Eluent A	5 mmol/L NH ₄	-acetate + 0.1%	acetic acid in wa	ter	
Eluent B	Acetonitrile				
Gradient	%A	Flow [mL/min]	Time [min]		
	5	0.4	0		
	95	0.4	2		
	95	0.4	5		
	5	0.4	5.1 15		
Injection volume	5 μL	0.4	13		
Calibration standards and levels	e.g. 0.05 or 0.1 µg/ISTD portion*+ one level at the reporting limit				
Acquired mass transitions	Compound		Mass Transitions (m/z)		
	Chlormequat D4 (ISTD):		122/58, 122/63, 124/58 126/58		
	Mepiquat Mepiquat D3 (ISTD):		114/98, 114/58 117/101		
	Difenzoquat No ISTD currently available		249/77, 249/129 -		
	ETU ETU D4 (ISTD):		103/44, 103/60, 103/86 107/48		
	PTU PTU D6 (ISTD)		117/100, 117/58 123/64	3, 117/60	

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).

For more information on method 5 please refer to the following document within the EURL homepage: http://www.crl-pesticides.eu/library/docs/srm/meth_ChlormequatMepiquat_CrlSrm.pdf

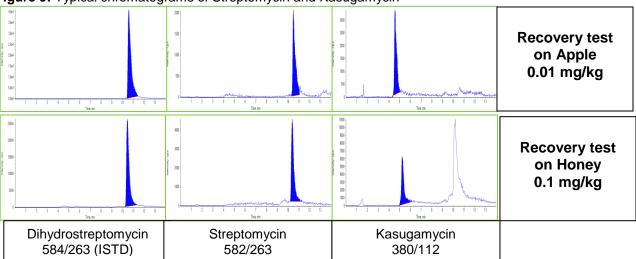

5.6.8. Method 6 (for Streptomycin and Kasugamycin)

Table 11: Proposed LC-MS/MS conditions Streptomycin and Kasugamycin

Instrument parameters	Conditions	Conditions			
Ionisation mode	ESI pos	ESI pos			
Column		2.1 x 150 mm 5µm 10 R-21.150.0510); 40°0			
Pre-filters	e.g. Supelo	o column saver 2.0	µm Filter		
Pre-column		2.1 x 10 mm 5 µm R-21.G.0510)			
Eluent A	0.1% formi	c acid in water			
Eluent B	0.1% formi	0.1% formic acid in acetonitrile			
Gradient	%A	Flow [mL/min]	Time [min]		
	20	0.3	0		
	20	0.3	5		
	80	0.5	10		
	80	0.5	14		
	20	0.3	14.1		
	20	0.3	22		
Injection volume	50 μL				
Calibration standards and levels		r 0.1 μg/ISTD portion c vials if streptomycin			
Acquired mass transitions	Compound	Compound		ions (m/z)	
	Streptomyo Dihydrostre	cin eptomycin (ISTD)	582/263, 582/246, 582/ 221 584/263		
	Kasugamy		380/112, 380/200		

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also Table 1).

Figure 9: Typical chromatograms of Streptomycin and Kasugamycin

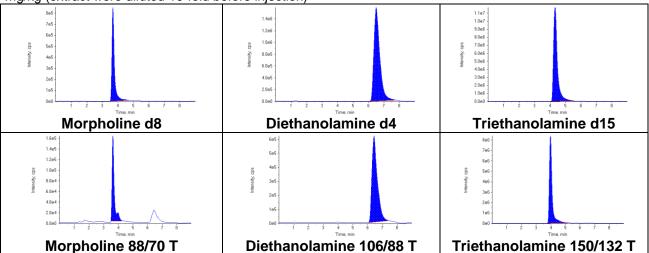

5.6.9. Method 7 (for Morpholine, Diethanolamine and Triethanolamine)

Table 12: Proposed LC-MS/MS conditions Morpholine, Diethanolamine and Triethanolamine

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column	Dionex Acclaim Trinity P1 2.1	x 100 mm (3 μm) (P/N 071389); 40°C			
Pre-filters	e.g. Supelco column saver 2.0 µ	um Filter			
Pre-column	Dionex Acclaim Trinity P1 2.1	x 10 mm (3 μm) (P/N 071391)			
Eluent A	50 mmol NH ₄ -formate in water (adjust to pH 4 with formic acid) Use brown glass bottles!				
Eluent B	Acetonitrile				
Gradient	%A Flow [mL/min] 10 0.4 10 0.4	Time [min] 0 10			
Injection volume	5 μL				
Calibration standards and levels	e.g. 0.05 or 0.1 μg/ISTD portion (use plastic vials if streptomycin	+ one level at the reporting limit is within your scope)			
Acquired mass transitions	Compound	Mass Transitions (m/z)			
	Morpholine Morpholine D8 (ISTD)	88/70, 88/45, 88/44 96/78			
	Diethanolamine (DEA) Diethanolamine D4 (ISTD)	106/88, 106/70, 106/45 110/92			
	Triethanolamine (TEA) Triethanolamine D12 (ISTD)	150/132, 150/87, 150/70 162/144			

^{*} One ISTD portion is the absolute ISTD-mass contained in the prepared calibration standard solution (see also **Table 1**). Morpholin, DEA and TEA are not pesticides, they are additive of waxes used to coat crops (citrus, apples and mangoes etc). They are included in this method for the sake of convenience and synergy. As these three compounds can be analyzed very sensitively 5-10-fold dilution of the extracts before injection is recommendable where possible, especially in absence of an ISTD requiring standard additions approach (**5.5.3**)

Figure 10: Typical chromatograms of Morpholine, Diethanolamine and Triethanolamine in Apple extracts at 0.05 mg/kg (extract were diluted 10-fold before injection)

5.7. Calibration and Calculations

5.7.1. **Using ISTD**

5.7.1.1. Where ISTD is added to the sample before any aliquotation:

The following calculation approach requires that the ratio of the ISTD masses added to the test portions (5.2.3) and to the calibration standard(s) (5.5) ($m_{\rm ISTD}^{\rm sample}$ / $m_{\rm ISTD}^{\rm cal\ mix}$) is known and constant. By keeping the ISTD constant throughout the calibration levels the peak ratio $PR^{\rm cal\ mix}$ ($A_{\rm pest}^{\rm cal\ mix}$ / $A_{\rm ISTD}^{\rm cal\ mix}$) of each calibration level can be plotted against the absolute mass of the pesticide $m_{\rm pest}^{\rm cal\ mix}$ rather than the ratio $m_{\rm pest}^{\rm cal\ mix}$ / $m_{\rm ISTD}^{\rm cal\ mix}$ (the $m_{\rm ISTD}^{\rm cal\ mix}$ is set as 1).

The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$PR^{cal\,mix} = a_{cal} \times m_{pest}^{cal\,mix} + b_{cal}$$
 (1)

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract ($PR^{sample} = A_{pest}^{Sample} / A_{ISTD}^{Sample}$), the correction factor ($m_{ISTD}^{sample} / m_{ISTD}^{cal mix}$) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(PR^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times \frac{m_{ISID}^{Sample}}{m_{ISID}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
 (2)

Reasonably (but not necessarily) the calibration standards should be prepared in such a way that the ratio m_{ISTD}^{sample} / $m_{ISTD}^{cal \, mix}$ equals 20 (the assumed volume ratio of sample extract versus calibration standard). The absolute masses of the ISTD-WS I and II do not need to be necessarily known (see also the notes of **Table 1**.

5.7.1.2. Where ISTD is added to an aliquot of the extract

When adding the ISTD to an aliquot of the extract (e.g. 1 mL) the knowledge of the exact total volume of the sample extract becomes important. Water adjustment is thus essential and if it is done as described in **5.2.2** and **Table18**, the total volume can be assumed to be exactly 20 mL. In this case 1 mL sample extract will correspond to $1/20^{th}$ of the test portion (m_a). The mass of the ISTD to be added to an aliquot (m_{ISTD} aliquot) should be scaled according to the aliquot volume used (V_{aliquot}) with the ISTD mass ratio (m_{ISTD} aliquot / m_{ISTD} cal mix) being important for the calculation. Reasonably (but not necessarily) m_{ISTD} aliquot should be derived using the following formula m_{ISTD} aliquot = m_{ISTD} sample x V_{aliquot}/20, with m_{ISTD} sample being the ISTD mass that would have been added to the entire sample portion according to **5.2.2** and **Table 18**.

Following the above, the mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract $(PR^{sample} = A_{pest}^{sample} / A_{ISTD}^{sample})$, the correction factor $(m_{ISTD}^{aliquot} / m_{ISTD}^{cal mix})$ as well as the weight of the sample equivalents in the aliquot ($m_{aliquot} = m_a x V_{aliquot}/20$).

$$w_{R} = \frac{(PR^{sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{alianot}} \times \frac{m_{ISTD}^{alianot}}{m_{ISTD}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(3)

Variables used

Mass of pesticide in calibration mixture	$m_{\it pest}^{\it cal\ mix}$	μg
Mass of pesticide in final extract	m_{pest}^{sample}	μg
Mass of internal standard in calibration mixture	m ^{cal mix} MISTD	μg
Mass of internal standard added to test portion (sample)	m_{ISTD}^{sample}	μg
Mass of internal standard added to aliquot of sample extract	$m_{\it ISTD}^{\it aliquot}$	μg
Volume of sample extract aliquot used (5.7.1.2 and 5.5.3) to spike the ISTD or for standard additions	$V^{\it aliquot}$	ml
Mass of test portion	m_a	g
Mass of test portion represented in an aliquot	m _{aliquot}	g
Mass fraction of pesticide in the sample	W_R	mg/kg
Peak area of pesticide obtained from calibration standard (mixture)	$A_{pest}^{cal\;mix}$	(counts)
Peak area of ISTD obtained from calibration standard (mixture)	$A_{ISTD}^{cal\ mix}$	(counts)
Peak area of pesticide obtained from the injected extract	A_{pest}^{sample}	(counts)
Peak area of ISTD obtained from the injected extract	A_{ISTD}^{sample}	(counts)
Peak ratio of pesticide vs. ISTD obtained from calibration mixture	PR cal mix	(dimensionless)
Peak ratio of pesticide vs. ISTD obtained from injected extract	PR sample	(dimensionless)
Slope of calibration graph	a cal	(dimensionless)
Bias of calibration graph (intercept)	b cal	(dimensionless)

5.7.2. Not using ISTD

If no appropriate ISTDs are used it is of high importance to properly compensate for matrix effects. For the compensation of matrix effects matrix-matched calibrations (5.5.2) and the standard additions approach (5.5.3) are recommended. In both cases the assumption is made that the total volume of the sample extract is exactly 20 mL. Adjustment of the water content (and extract volume) in the sample is thus paramount.

5.7.2.1. Calculations when employing matrix-matched calibration without ISTD

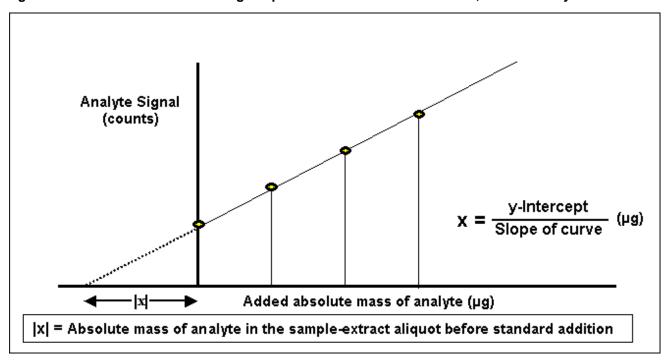
The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$A_{pest}^{cal\,mix} = a_{cal} \times C_{pest}^{cal\,mix} + b_{cal}$$
 (1)

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak area of the pesticide obtained from the sample extract (A_{pest}^{sample}) and a correction factor (V) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(A_{pest}^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times V_{end} \left(\frac{\text{mg}}{\text{kg}}\right)$$
 (2)

where V_{end} is the total volume of the sample extract (20 mL).


All other variables are listed in 5.7.1.2.

5.7.2.2. Calculations when employing the standard additions approach

The standard additions approach is the method of choice where no appropriate IL-ISTD is available. This approach typically compensates matrix effect better than the matrix-matched calibrations (**5.5.2**). The mass fraction of the pesticide in the sample (w_R) is calculated via linear regression using a graphical presentation as shown in Figure 1. The Y-intercept of the calibration graph will indicate the pesticide mass contained in the non-fortified aliquot of the sample extract.

Figure 11 — Internal calibration using the procedure of standard additions, schematically

Key:

Y Peak area of analyte

X Added absolute mass of analyte $m_{pest}^{std \ add}$ in μg

absolute amount of analyte in the sample extract (in μ g) before standard addition (y = 0)

With
$$x = \frac{y - \text{int } ercept (b)}{slope of the curve (a)}$$
 (µg)

The calculation is performed as follows using the regression graph shown in Figure 11

$$w_R = \frac{b}{a} \times \frac{V_{end}}{V_{al} \times m_a} \left(\frac{\text{mg}}{\text{kg}} \right)$$

where:

b Y-intercept of the calibration graph of the analyte in question;

a Slope of the calibration graph of the analyte in question $(1/\mu g)$;

V_{end} Volume of sample extract (mL) (should be 20 mL)

 V_{al} Volume of aliquots used for the standard additions approach (mL)

*m*_a Weight of initial sample portion (g)

6. Performance Data

Exemplary results of recovery experiments (n=5) using matrix matched calibrations (for more information see method validation database at www.crl-pesticides-datapool).

Table 13: Overview of approximate limits of quantification (LOQs)*

Method	Pesticide	Most fruits and Vege- tables (tested on To- mato, Cucumber, Ap- ples) [mg/kg]	Citrus (tested on Or- ange) [mg/kg]	Cereals (tested on Barley) [mg/kg]
M1.1/M1.2/M1.3	Ethephon	0.01/0.01/0.01	0.01/0.01/0.01	0.02/0.02/0.02
M1.1/M1.2/M1.3	HEPA	0.01/0.01/0.02	0.01/0.01/0.02	0.02/0.02/0.02
M1.1/M1.2/M1.3	Glyphosate	0.01/0.01/0.02	0.02/0.01/0.02	0.02/0.02/0.02
M1.1/M1.2/M1.3	AMPA	0.01/0.01/0.02	0.02/0.01/0.02	0.02/0.02/0.02
M1.1/M1.2/M1.3	Glufosinate	0.01/0.01/0.02	0.02/0.02/0.02	0.02/0.02/0.02
M1.1/M1.2/M1.3	MPPA	0.01/0.01/0.01	0.02/0.02/0.01	0.02/0.02/0.02
M1.1/M1.2/M1.3	N-Acetyl-Glufosinate	0.02/0.02/0.01	0.02/0.02/0.01	0.02/0.02/0.02
M1.2/M1.3	N-Acetyl-AMPA	0.01/0.01	0.01/0.01	0.02/0.02
M1.3 / M2	Perchlorate	0.01/0.01	0.01/0.01	0.01/0.01
M1.2 / M1.3	Phosphonic acid**	0.1/0.1	0.1/0.1	0.1/0.1
M1.3	Chlorate**	0.01	n.a.	n.a.
M1.1/ M1.3/M2	Fosetyl	0.1 / 0.005/0.005	n.a. / 0.005/0.005	n.a. / 0.005/0.005
M2 / M1.3	Maleic Hydrazide	0.01	0.01	0.02
M3	Amitrol	0.01	0.01	0.02
M3 / M5	ETU	0.01 / 0.01	0.02 / n.a.	0.02 / n.a.
M3 / M5	PTU	0.01 / 0.01	0.02 / n.a.	0.02 / n.a.
M3 / M4 / M5	Chlormequat	0.005 / 0.005	0.005 / 0.005	0.01 / 0.01
M3 / M4 / M5	Mepiquat	0.005 / 0.01	0.005 / 0.01	0.001 / 0.02
M3 / M4	Cyromazine	0.01 / 0.01	0.01 / 0.01	0.02 / 0.02
M3 / M4	Daminozide	0.01 / 0.02	0.01 / 0.02	0.02 / 0.04
M3 / M4	Trimethylsulfonium-Cation	0.01 / 0.005	0.01 / 0.005	0.02 / 0.01
M3 / M4	Nereistoxin	0.01 / 0.01	n.a. / n.a.	n.a. / n.a.
M4	N,N-Dimethylhydrazine	0.005	0.005	0.01
M4	Diquat	0.005	0.005	0.005

EU Reference Laboratories for Residues of Pesticides
Single Residue Methods

M4	Paraquat	0.005	0.005	0.005
M6	Streptomycin	0.01	n.a.	n.a.
M6	Kasugamycin	0.01	n.a.	n.a.
M7	Morpholine**	0.01**	0.01**	n.a.
M7	Diethanolamine**	0.01**	0.01**	n.a.
M7	Triethanolamine**	0.01**	0.01**	n.a.

^{*} using Q-Trap 5500 instrument; ** value derived from 10-fold diluted extract (0,05 g sample equivalents/mL)

7. References

Anastassiades, M and Mack, D (2008); New Developments in the Analysis of Pesticides Typically not Covered by Multiresidue Methods; European Pesticide Residue Workshop, EPRW 2008, Berlin, oral presentation O1, Book of Abstracts

Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses

Alder L. and Startin J. R. (2005); Determination of Chlormequat and Mepiquat in Foods by Liquid Chromatography/Mass Spectrometry or Liquid Chromatography/Tandem Mass Spectrometry: Interlaboratory Study; Journal of AOAC International Vol. 88, No. 6: 1762-1776

Vahl, M. et al. (1998); Analysis of Chlormequat residues in grain using liquid chromatography-mass spectrometry (LC-MS/MS); Fresenius J Anal Chem 361:817-820

ANNEX

Table 14: Exemplary concentrations of pesticide stock and working solutions (3.15 and 3.16), solvent proposals also apply for the IL-ISTD solutions (see 3.18, 3.19, 3.20):

Compound	Method	Stock Solution (exemplary)		Working Solutions (exemplary)		
		Solvent used to prepare	[mg/mL]	Solvent used to prepare	[µg/mL]	
Ethephon	M1.(1.2.3)	Methanol + 1% Formic acid	1	Methanol + 1% Formic acid	5/1/0.1	
HEPA	M1.(1.2.3)	Methanol	1	Methanol + 1% Formic acid	5/1/0.1	
Glyphosate	M1.(1.2.3)	Water / Methanol (3:1)	0.2	Methanol + 1% Formic acid	5/1/0.1	
AMPA*	M1.(1.2.3)	Water *	0.01	Methanol + 1% Formic acid	5/1/0.1	
Glufosinate	M1.(1.2.3)	Water / Methanol (2:1)	1	Methanol + 1% Formic acid	5/1/0.1	
MPPA*	M1.(1.2.3)	Acetonitrile*	0.01	Methanol + 1% Formic acid	5/1/0.1	
N-Acetyl-Glufosinate	M1.(1.2.3)	Methanol	1	Methanol + 1% Formic acid	5/1/0.1	
N-Acetyl- AMPA*	M1.(2.3)	Water*	0.1	Methanol + 1% Formic acid	5/1/0.1	
Phosphonic acid	M1.(2.3)	Water	1	Methanol	5/1/0.1	
Fosetyl-Aluminium	M1.(2.3)/M2	Water / Methanol (3:1)	0.1	Methanol	5/1/0.1	
Maleic Hydrazide	M1.3/M2	Methanol	1	Methanol	5/1/0.1	
Perchlorate	M1.3/M2	Methanol	1	Methanol	5/1/0.1	
Chlorate	M1.3	Methanol	1	Methanol	5/1/0.1	
Amitrol	M3	Methanol	1	Methanol	5/1/0.1	
ETU	M3	Methanol	1	Methanol	5/1/0.1	
PTU	M3	Methanol	1	Methanol	5/1/0.1	
Trimethylsulfonium- Cation (trimesium)	M3,4	Methanol	1	Methanol	5/1/0.1	
Cyromazine	M3,4	Methanol	1	Methanol	5/1/0.1	
Daminozide	M3,4	Methanol	1	Methanol	5/1/0.1	
Chlormequat	M3,4,5	Methanol	1	Methanol	5/1/0.1	
Mepiquat	M3,4,5	Methanol	1	Methanol	5/1/0.1	
Diquat**	M4	Methanol + 1% Formic acid	1	Methanol + 1% Formic acid	5/1/0.1	
Paraquat**	M4	Methanol + 1% Formic acid	1	Methanol + 1% Formic acid	5/1/0.1	
Nereistoxin	M4	Methanol / Water (3:1)	1	Methanol	5/1/0.1	
Difenzoquat	M4	Acetonitrile	1	Methanol	5/1/0.1	
N,N-Dimethyhydrazine	M4	Acetonitrile	1	Methanol	5/1/0.1	
Streptomycin**	M6	Water / Methanol (1:1)	1	Methanol	5/1/0.1	
Kasugamycin	M6	Methanol	1	Methanol	5/1/0.1	
Morpholine	M7	Methanol	1	Methanol	5/1/0.1	
Diethanolamine	M7	Methanol	1	Methanol	5/1/0.1	
Triethanolamine	M7	Methanol 1		Methanol	5/1/0.1	

^{*} Solutions as provided by the provider

** Use plastic vessels and stoppers for Paraquat (M4), Diquat (M4), Streptomycin (M6) and Glyphosate (M1)

Table 15: Providers of isotopically labeled internal standards 3.17, (exemplary)

	Name			Conc.	Amount	Prices		
Name		Source	Article-No.	[µg/mL]			2 μg*	0.1 μg**
	(¹⁵ N)	1	XA10240100ME	100	1.1 mL	179€	325 c	16 c
Amitrole	(¹⁵ N / ¹³ C)	1	XA10240110AL	100	1.1 mL	360 €	655 c	33 c
	(N / C)	7	A633382		10 mg	1138€	23 c	1.1 c
		1	XA10205100WA	100	1.1 mL	330 €	600 c	30 c
	$(^{13}C_2^{15}N_2)$	8	CIL-CDNLM-6786-1.2	100	1.2 mL	532 €	887 c	44 c
AMPA		5	CDNLM-6786-1.2	100	1.2 mL	340 €	563 c	28 c
	(¹³ C ₂ ¹⁵ N ₂ D ₂) ?	11	CDNLM-6786-1.2	100	1.2 mL	380 €	630 c	31 c
		1	X 11340100DO	100	10 mL	310 €	62 c	3 c
Ohlamaaanust ahlamida (4.4	0.0 D4)	1	XA11340100DO	100	1.1 mL	79€	144 c	7.2 c
Chlormequat chloride (1,1,	2,2-04)	6	D3386		5 mg	605€	24 c	1.2 c
		1	CA11340100		5 mg	380€	15.2 c	0.8 c
Chlormequat-chloride D9		3	673151		5 mg	310 €	12.4 c	0.6 c
Cyromazine D4		1	XA11920010EA	100	1.1 mL	128 €	232 c	11.6 c
Cyromazine D4		7	C989302		10 mg	800€	16 c	0.8 c
Daminozide D6		1	XA11960100AL	100	1.1 mL	94 €	171 c	8.5 c
Diethanolamine D4		4	D-5307/0.1		100 mg	432 €	0.86 c	0.04 c
Dihydrostreptomycin sesqu	uisulfate hydrate	1	C 12635300		100 mg	27 €	0.05 c	0.003 c
Dihydrostreptomycin sulph	ate	8	EPD1954000		25 mg	120 €	0.96	0.048
		1	XA12960010DO	100	1.1 mL	89€	162 c	8.1 c
		4	D-3932		50 mg	432 €	1.72 c	0.08 c
Diquat dibromide D4 (ethy	ene-d4)	6	D17071		50 mg	534 €	2.1 c	0.1 c
(mostly as monohydrate!)	,	7	D492902		5 mg	87 €	3.5 c	0.17 c
		11	B130022-10		10 mg	900 €	18 c	0.95 c
		12	sc-218246		5 mg	190 €	8 c	0.4 c
		1	XA13230100AC	100	1.1 mL	138 €	251 c	12.5 c
Ethephon D4 (2-Chloroeth	vl-1.1.2.2-D4)	6	D8328		5 mg	1387 €	55.5 c	2.8 c
	· · · · · · · · · · · · · · · · · · ·	7	C366177		10 mg	854 €	17.1 c	0.85 c
		,	C 13330100		50 mg	310 €	1.2 c	0.06 c
		1	XA13330100AC	100	1.1 mL	138 €	251 c	12.5 c
Ethylene thiourea (ETU) D	4	6	D1965	100	100 mg	391 €	0.78 c	0.04 c
					Ū			
Facatul aluminium D15		7	1367002		10 mg	75 €	1.5 c	0.08 c
Fosetyl-aluminium D15		2	CA13940010	friendly	10 mg	380 €	8 c	0.4 c
Glufosinate D3			0500050	menuly (4500 C	20 -	4.5.
		7	G596952 XA14050100WA	100	10 mg 1.1 mL	1500 € 330 €	30 c 600 c	1.5 c 30 c
			CNLM-4666-1.2	100	1.1 IIIL	267 €	445 c	22 c
		5 5						
		8	CNLM-4666-10 CIL-CNLM-4666-1.2	100	10 mL 1.2 mL	890 € 394 €	178 c 657 c	8.9 c 33 c
Glyphosate (1,2- ¹³ C ₂ ¹⁵ N)		6	CN10570	100	5 mg	1500 €	60.4 c	3.0 c
		7	G765002		10 mg	800 €	16 c	0.8 c
		10	608629-SPEC		10 mg	247 €	5 c	0.25 c
		12	sc-280758		1 mg	160 €	16 c	0.8 c
		1	CA13230200		10 mg	240 €	5 c	0.25 c
HEPA (Hydroxy-Ethephon)) D4	7	H942050		50 mg	135 €	0,5 c	0,03 c
		2	-			friendly o		
Malaic bydrazida (MLI) Da		1	C 14730100		10 mg	230 €	23 c (10µg)	1.2 c (0.5 µg)
Maleic hydrazide (MH) D2		3	673799		10 mg	199€	20 c (10μg)	1 c (0.5 µg)

35 of 44

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

					Conc	Amount		Prices		
Name	Name		SOURCE AFFICIE-NO			[µg/mL] per unit		2 μg*	0.1 μg**	
Mepiquat Chloride	D1	6	6	D14539		50 mg	1350 €	5.4 c	0.3 c	
Maniguet indide	Da	s (methyl D3)	1	X 14880100DO	100	10 mL	410€	82 c	4 c	
Mepiquat iodide	DS	(methyl D3)	1	XA14880100DO	100	1.1 mL	73 €	133 c	6.6 c	
Morpholin D8			4	D-1895/0.5		500 mg	468 €	0.94 c (10µg)	0.05 c (0.5µg)	
		methyl D3	2	-	friendly donation					
N-Acetyl-Glufosinate D	3	acetyl amino D3, (disodium salt)	7	A178237	5 mg		100 €	4 c	0.2 c	
Nereistoxin oxalate D6			1	C 15502010	10 mg		240 € 5 c 0.25 c		0.25 c	
MPPA D3			2	-	friend	y donation				
IVIPPA D3			7	M326162		10 mg	1500 €	30 c	1.5 c	
Perchlorate ¹⁸ O ₄			5	OLM-7310-1.2	100	1.2 mL	249 €	415 c	21 c	
Doroguet DC dijedide			1	C 15870200		50 mg	250 €	1 c	0.05 c	
Paraquat D6 diiodide			1	XA15870200DO	100	1.2 mL	58€	97 c	4.8 c	
Paraquat-D8 dichloride		7	P191902		25 mg	920 €	74 c	3.7 c		
Dranylana thiaura - /DT	-1 1\ 1	De	1	D-5959/0.1		100 mg	297 €	0.6 c	0.03 c	
Propylene thiourea (PT	U) I	טט	6	D535		100 mg	1067 €	2.1 c	0.1 c	
Triethanolamine-D15			1	D-5459/0.1		100 mg	315€	0.63 c	0.03 c	

Providers of compounds:

(Disclaimer: The use of trade names is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the EURL of any product to the exclusion of others. Market prices may be subject to changes, shipping costs are not included in the pricing):

- 1: Dr. Ehrenstorfer
- 2: Bayer Crop Science
- 3: HPC (High Purity Compounds)
- 4: CDN Isotopes (via Dr. Ehrenstorfer)
- 5: Cambridge Isotope Lab. Inc
- 6: Medical isotopes
- 7: Toronto Research Chemicals
- 8: LGC Standards
- 9: Crescent Chemical Co., Inc.
- 10: Sigma-Aldrich
- 11. Cerilliant (by Sigma Aldrich)
- 12. Santa cruz biotechnology, inc.

^{* 2} μg ISTD are typically employed to samples (typically 10 g) at the beginning of the procedure ** 0.1 μg are typically added to 1 mL aliquots of sample extracts (typically corresponding to 0.5 g sample), in this case only matrix-effects are compensated

Table 16: Exemplary concentrations of ISTD working solutions (3.19)

		ISTD -Addition	to samples (5.2.3)	ISTD -Addition ard(s) (5.5)	to calibration stand-	Expected approx. ISTD-
Method	ISTD*	Suggested concentration of ISTD-WS I (3.19)	Absolute mass of ISTD spiked to sample (50 µL ISTD-WS I) (m _{ISTD}	concentration of ISTD- WS II (3.20) **	Absolute mass of ISTD spiked to calibration standard (50 µL ISTD-WS II) (m _{ISTD} cal mix)	concentration in sample extracts (~20 mL) and calibration standards (~1 mL)
		μg/mL	μg	μg/mL	μg	μg/mL
M1.(1.2.3)	Ethephon D4	40	2	2	0,1	0,1
M1.(1.2.3)	HEPA D4	40	2	2	0,1	0,1
M1.(1.2.3)	Glyphosat ¹³ C ₂ ¹⁵ N	40	2	2	0,1	0,1
M1.(1.2.3)	AMPA ¹³ C ¹⁵ N	40	2	2	0,1	0,1
M1.(2.3)	N-Acetyl- AMPA*	40	2	2	0,1	0,1
M1.(1.2.3)	Glufosinat D3	40	2	2	0,1	0,1
M1.(1.2.3)	MPPA D3	40	2	2	0,1	0,1
M1.(1.2.3)	N-Acetyl-Glufosinate D3	40	2	2	0,1	0,1
M1.(2.3),2	Fosetyl D5 (from fosetyl- aluminium D15)	40	2	2	0,1	0,1
M1.3,2	Maleic hydrazide D2	200	10	10	0,5	0,5
M1.3,2	Perchlorat ¹⁸ O ₄	40	2	2	0,1	0,1
МЗ	Amitrole (15 N)/ (15 N $_2$ 13 C $_2$)	40	2	2	0,1	0,1
M3,5	ETU D4	40	2	2	0,1	0,1
M3,5	PTU D6	40	2	2	0,1	0,1
M3,4	Cyromazin D4	40	2	2	0,1	0,1
M3,4	Daminozid D6	40	2	2	0,1	0,1
M3,4	Nereistoxin D4	40	2	2	0,1	0,1
M3,4,5	Chlormequat D4	40	2	2	0,1	0,1
M3,4,5	Mepiquat D3	40	2	2	0,1	0,1
M4	Diquat D4	40	2	2	0,1	0,1
M4	Paraquat D6	40	2	2	0,1	0,1
M6	Dihydrostreptomycin****	40	2	2	0,1	0,1
M7	Morpholin D8	40	2	2	0,1	0,1
M7	Diethanolamine D6	40	2	2	0,1	0,1
M7	Triethanolamine D12	40	2	2	0,1	0,1

^{*} The concentration of the ISTD should be high enough to ensure good detection with little influence of the noise on the signal (e.g. S/N>20 is fine). It should be kept in mind, however, that isotopically labeled ISTDs (IL-ISTDs) typically contain small amounts of the non-labeled analogues. To minimize the risk of false positives the amount of IL-ISTD added to the samples should thus not be higher than necessary. Quantification of the parent is typically not affected to a great extend as the cross-contamination is typically at low levels and as similar concentrations of the native pesticide originating from the IL-ISTD will also be present in the calibration standards and thus subtracted via the intercept. In the case of maleic hydrazide, where the IL-ISTD is added at higher concentrations to the samples special attention is necessary (see also comments under 5.6.2).

NOTE: If detections of a compound are rather seldom and the ISTD expensive it is advisable to add the ISTD to the 1 mL aliquot transferred to the auto-sampler vial (see **5.2.7**). Alternatively, it can be even skipped entirely in the first screening analysis and only added in a second analysis in case the first one was positive. The first approach is to be preferred especially where the retention times of a compound tends to shift. By comparing the retention time between the ISTD and the suspected peak as well as the peak shape the certainty of identification significantly improves.

^{**} a 20-fold dilution of the ISTD working solution used to spike samples in step 5.2.3 .

^{***} Dihydrostreptomycin is not isotopically labeled but still suitable for compensation of matrix effects on streptomycin if LC conditions are adjusted in such a way to ensure exact co-elution and thus equivalent matrix-effects

Table 17: Water content of selected foods and water amount to be added to test portions prior to extraction (**5.2.2**) depending on the analytical approach

		Typical	tions [g] (where water-a	mL of water to be added to 10 g test por- tions [g] (where water-addition refers to differ- ent sample weights this is specified)		
Commodity group	Commodity	water con- tent g/100 g	When quantifying with ISTD that was added at the beginning of the procedure (5.2.3)	When no ISTD is used or when ISTD is added after aliquotation (5.7.1.2)	Remarks	
Fruits						
Citrus fruit	citrus juices	90	-	1		
	grapefruit	90	-	1		
	lemon/lime	85	-	1.5		
	orange	85	-	1.5		
	tangerine	90	-	1		
Pome fruit	apple	85	-	1.5		
	apple (dried)	30	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate	
	apple sauce	80	-	2		
	apple juice	90	-	1		
	pear	85	-	1.5		
	quince	85	-	1.5		
Stone fruit	apricot	85	-	1.5		
	apricot (dried)	30	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate	
	apricot nectar	85	-	1.5		
	cherry	85	-	1.5		
	mirabelle	80	-	2		
	nectarine	85	-	1.5		
	peach	90	-	1		
	peach (dried)	20	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate	
	plum	85	-	1.5		
	plum (dried)	20	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate	
Soft and small	blackberry	85	-	1.5		
fruit	blueberry	85	-	1.5		

		Typical	mL of water to be addeductions [g] (where water-agent sample weights this		
Commodity group	Commodity	water con- tent g/100 g	When quantifying with ISTD that was added at the beginning of the procedure (5.2.3)	When no ISTD is used or when ISTD is added after aliquotation (5.7.1.2)	Remarks
	currant	85	-	1.5	
	elderberry	80	-	2	
	gooseberry	90	-	1	
	grapes	80	-	2	
	raspberry	85	-	1.5	
	raisins	20	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate
	strawberry	90	-	1	
	pineapple	85	-	1.5	
Other fruits	banana	75	2.5	2.5	
	fig	80	-	2	
	fig (dired)	20	8.5 to 5 g sample (see 5.1.1)	8.5 to 5 g sample (see 5.1.1)	Weigh 13.5 g rehydratized homogenate
	kiwi	85	-	1.5	
	mango	80	-	2	
	papaya	90	-	1	
Vegetables					
Root and tu- ber vegetables	beetroot	90	-	1	
bei vegetables	carrot	90	-	1	
	celeriac	90	-	1	
	horseradish	75	2.5	2.5	
	parsley root	90	-	1	
	radish	95	-	0.5	
	black salsify	80	-	2	
	potato	80	-	2	
	garlic	60	7 to 5 g sample	7 to 5 g sample	
Leek plants	onion	90	-	1	
	leek	85	-	1.5	
	shallot	80	-	2	

		Typical	mL of water to be addeductions [g] (where water-agent sample weights this	addition refers to differ-	
Commodity group	Commodity	water con- tent g/100 g	When quantifying with ISTD that was added at the begin- ning of the proce- dure (5.2.3)	When no ISTD is used or when ISTD is added after aliquotation (5.7.1.2)	Remarks
	chive	85	-	1.5	
Fruiting vege-	aubergine	90	-	1	
tables	cucumber	95	-	0.5	
	melon	90	-	1	
	Pepper, sweet	90	-	1	
	pumpkin	95	-	0.5	
	tomato	95	-	0.5	
	zucchini	95	-	0.5	
	broccoli	90	-	1	
Cabbage	brussel sprouts	85	-	1.5	
	cauliflower	90	-	1	
	chinese cabbage	95	-	0.5	
	kale	90	-	1	
	kohlrabi	90	-	1	
	red cabbage	90	-	1	
	savoy cabbage	90	-	1	
	white cabbage	90	-	1	
	lettuce varieties	95	-	0.5	
	endive	95	-	0.5	
Leafy vegeta-	cress	90	-	1	
bles and herbs	lamb's lettuce	85	-	1.5	
	parsley	80	-	2	
	rucola	85	-	1.5	
	spinach	90	-	1	
Stem	asparagus	95	-	0.5	
vegetables	celery	95	-	0.5	
	leek	85	-	1.5	
	rhubarb	95	-	0.5	

EU Reference Laboratories for Residues of Pesticides

Single Residue Methods

Commodity group	,	Typical	mL of water to be adde tions [g] (where water-a ent sample weights this		
	Commodity	water con- tent g/100 g	When quantifying with ISTD that was added at the beginning of the procedure (5.2.3)	When no ISTD is used or when ISTD is added after aliquotation (5.7.1.2)	Remarks
	artichokes	85	-	1.5	
Legumes	beans, peas, lentils (dried)	<10	10 to 5 g sample	10 to 5 g sample	
	beans, peas	75	2.5	2.5	
Miscellaneo	ous				
Cereals	grain, flour. etc.	10	10 to 5 g sample	10 to 5 g sample	Different sample amounts may be used depending on water-absorbing properties of material
Extract-rich	coffee beans	<10	10 to 2 g sample	10 to 2 g sample	Different sample
("difficult") commodities	tea	<10	10 to 2 g sample	10 to 2 g sample	amounts may be
	dry herbs and spices	<10	10 to 2 g sample	10 to 2 g sample	used depending on extract-richness
Other	mushrooms	90	-	1	
	wine	90	-	1	
	Honey	20	9 to 5 g sample	9 to 5 g sample	

Table 18: Exemplary LC-MS/MS parameters for ABI 5500

	Methods 1.1 / 1.2	Method 1.3	Method 2	Method 3+4+5	Method 6				
Ion source/Mode	Turbo Ion Spray	Turbo Ion Spray	Turbo Ion Spray	Turbo Ion Spray	Turbo Ion Spray				
	(ESI)/negative	(ESI)/negative	(ESI)/negative	(ESI)/positive	(ESI)/positive				
Curtain gas	Nitrogen	Nitrogen	Nitrogen	Nitrogen	Nitrogen				
Our tain gas	30 psi (2,07 bar)	30 psi (2,07 bar)	30 psi (2,07 bar)	40 psi (2,76 bar)	40 psi (2,76 bar)				
Collision gas	med	med	med	med	med				
Ion spray voltage	-4500	-4500	-4500	1500	5500				
Gas 1		Nit	rogen 50 psi (3,45 bar	r)					
Gas 2		Ni	trogen 50 psi (4,14 bar)					
Temperatur Gas 2	600°C	420°C	500°C	500°C	550°C				
Resolution MS 1		unit (ca. 0.7 amu FWHM*)							
Resolution MS 2		unit (ca. 0.7 amu FWHM)							
Dwell time	20	20	50	20	50				

^{*}FWHM = full width at half maximum

Table 19: Document History

Action	14 // 0	.,
Action	When?	Version
Development of Method by the CRL-SRM	2006-2008 Jun. 2008	-
Presentation of method at the EPRW in Berlin (oral presentation plus poster)		
Drafting of V1	NovDec. 2008 Jan. 2009	V1
Placing of V1 in CRL-Website		
Update of Table 1, Expected concentrations of ISTDs were calculated with a wrong dilution factor in previous version. Arithmetical errors were corrected. Introduction of measurement conditions for HEPA within the "Glyphosate & Co." method	Aug. 2009	V2
Introduction of measurement conditions for the screening of diquat and paraquat within the "Quats & Co. method"	Nov 2009	V3
Introduction of measurement conditions for Amitrole, chlormequat, mepiquat and daminozide "Amitrol & Co." method		
Extensive text revisions		
Introduction of measurement conditions for Streptomycin Kasugamycin	May 2010	V4
Introduction of measurement conditions for the screening of Perchlorate ion		
Extensive text revisions		
Extensive text revisions and restructuring of document	Nov 2010	V5
Introduction of measurement conditions for ETU, ETU D4, PTU, PTU D6, Cyromazine, Cyromazine D4, N-Acetyl-Glufosinate, N-Acetyl-Glufosinate D3, Glufosinate D3, MPPA D3, Morpholin, Morpholin D8		
Introduction of an acronym for the method (QuPPe)	Jul 2011	V6
Advice to use plastic vessels and stoppers for Glyphosate		
Minor modification and additional instructions in Method 1		
Modification of mobile phase of Method 3 to improve analysis of ETU and PTU		
Introd. of measurement cond. for Amitrole (15N / 13C) and Amitrole (15N) in Mth 3		
Introd. of measurement cond. for Nereistoxin and Nereistoxin D6 in Mth 4		
New method for the analysis of Morpholin/Morpholin D8; Diethanona-mine/diethanolanmine D6; Triethanolamine/Triethanolamine D12 (Method 7), removal of Morpholin from Method 4 as it does not separate from the interfering diethanolamine		
Introduction of ETU and PTU and their corresponding IL_ISTDs in Method 5		
Correction of dimension of stock solutions conc. in Table 12 (to mg/mL)		
Text and Table revisions		

EU Reference Laboratories for Residues of Pesticides Single Residue Methods

Action	When?	Version
Extensive revision of table concerning possible sources of purchase of ISTDs		
Some additions in "Apparatus and Consumables" chapter	Dec 2012	V7
Clarifications in chapter concerning standard additions		
Overview table concerning the scope of the methods 1.1, 1.2, 1.3 and 2		
Addition of phosphonic acid in Method 1.1 ("Glyphosate & Co.")		
New LC-method (Method 1.2) for "Glyphosate & Co." using a Dionex ionPac AS11-HC column and an Eluent with near to neutral pH; additionallycovering Fosetyl		
New LC-method (Method 1.3) for "Glyphosate & Co." using a Hypercarb column and an acidic Eluent covering covering all analytes covered by Method 1.1, Method 1.2 and Method 2 (including perchlorate).		
Update of practical considerations for methods 1.1-1.3		
Update of table with performance data		
Table with exemplary recovery data was deleted (recovery figures can be obtained in the eurl-datapool		
Update of table with LOQs		
Update of table with providers of isotope-labeled ISTDs		
Elimination of errors in text		
Addition of Chlorate in Method 1.3	Nov 2013	<mark>V7.1</mark>
Update of practical considerations for methods 1.1-1.3 (Column C)		
Update of table with performance data		
Update of table with LOQs		
Introduction of Trimethylsulfonium D9 and N,N-Dimethylhydrazine D6 in Method 4		