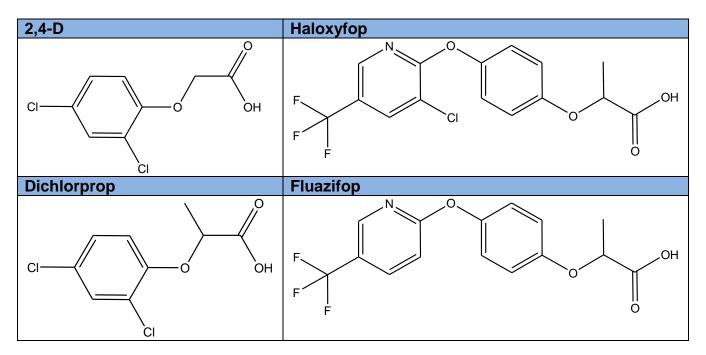


Analysis of Phenoxyalkanoic Acids in Milk using QuEChERS method and LC-MS/MS

Version 2 (last update: 05.05.14)

Short description

A method is presented for the analysis of acidic pesticides in milk. The pesticides are extracted using the QuEChERS method and analysed by LC-MS/MS following cleanup by freeze-out. The method does not involve a hydrolysis step and thus only covers the free acids. A variant which includes the conjugates will follow in a future version.


Compound details

The group of phenoxy herbicides is subdivided into:

- Phenoxyacetic acid herbicides (e.g. 4-CPA, 2,4-D, MCPA, 2,4,5-T)
- Phenoxybutyric acid herbicides (e.g. 2,4-DB, MCPB)
- Phenoxypropionic acid herbicides (e.g. dichlorprop, fenoprop, mecoprop)
- Aryloxyphenoxypropionic acid herbicides (e.g. diclofop, fluazifop, haloxyfop, quizalofop)

altogether these are 49 different compounds [4].

As representatives of the group the following four herbicides were validated for milk.

Residue definitions (commodity group AO, as of March 2014):

- 2,4-D (sum of 2,4-D and its esters expressed as 2,4-D)
- Dichlorprop: sum of dichlorprop (including dichlorprop-P) and its conjugates, expressed as dichlorprop
- Fluazifop-P-butyl (fluazifop acid (free and conjugate))
- Haloxyfop including Haloxyfop-R: Haloxyfop-R and conjugates of haloxyfop-R expressed as haloxyfop-R

Sources of Supply (exemplary):

Analytical standards of phenoxy herbicides can be purchased from most producers of analytical standards.

Apparatus and Consumables:

Use materials described in the QuEChERS standard procedure (EN15662). As a mechanical shaker you can use a horizontally or vertically reciprocating shaker or a rotatory shaker (e.g. HS260 by IKA or GenoGrinder by Spex or SSL1 Labscale Orbital Shaker by Stuart). To filter the extract use e.g. polyester disposable syringe filters of 0.45 µm pore size.

Extraction and Cleanup Procedure:

<u>Extraction</u>: Weigh 10 g of milk, add 10 mL acetonitrile and internal standard (e.g. 100µL of an appropriately concentrated solution) and shake 15 min using a mechanical shaker. Add QuEChERS citrate-buffer mix, shake 1 min and centrifuge --> Raw Extract.

<u>Cleanup</u>: Transfer e.g. 6-8 mL raw extract into a vial and place it in a freezer for at least 2 h. Take the vial out of the freezer and either a) <u>quickly</u> pass 1mL through a syringe filter into an LC-MS/MS vial, paying attention to avoid heating up the mixture as this would progressively re-dissolve lipids; OR b) <u>quickly</u> decant 1 mL into an LC-MS/MS vial paying attention to leave precipitates behind and to avoid heating up; OR c) <u>quickly</u> pass some milliliters through a cotton-wool-filled funnel into a vessel and transfer 1mL filtrate into an LC-MS/MS vial.

For a more intensive cleanup (mainly removal of additional fat), optionally, transfer 3 mL of the extract that was cleaned-up via freeze-out into a 15 mL centrifuge and dilute with 3 mL water (1:1 dilution). Shake shortly to mix and filter 1 mL through as syringe filter into an LC-MS/MS vial.

Alternative cleanup step: take 3 mL of the raw extract, add 3 mL of water and mix with 150 mg C18-sorbent (no PSA, no MgSO4), shake, centrifuge and filter. The absolute amount of IS to be added to 1 mL calibration solution should optimally be 20 times lower than the absolute amount added to the samples at the beginning of the procedure.

Preparation of calibration standards:

Matrix matched calibration standards are prepared using an extract of blank milk (not containing any of the pesticides of interest). The blank extract is produced as described above however without addition of an IS. 1mL final extract will represent approximately 1 g matrix. *If a 1:1 dilution step is conducted (see above) 1mL final extract will represent approximately 0,5 g matrix. The absolute amount of IS to be added to 1 mL calibration solution should optimally be 20 times lower than the absolute amount added to the samples at the beginning of the procedure.*

Measurement:

Inject the extracts into LC-MS/MS instrument.

Exemplary Instrumentation details for phenoxy alkanoic acids:

Tab. 1: MRM Details negative mode:

Instrument	Waters Acquity, ABSciex API 4000 QTrap				
Ionisation mode	ESI neg				
Column	Acquity UPL	C BEH Shield RP	[,] 18,		
	1.7 µm; 2.1	x 100 mm			
Pre-column	Van Guard	BEH Shield RP 18	8, 1.7 u	m	
Eluent A	0.01 % acetic acid in water (with 5% acetonitrile)				
Eluent B	0.01 % acetic acid in acetonitrile				
Gradient	time	flow [µL min]	A%	B%	
	0	400	80	20	
	4	400	70	30	
	7	00	10	90	
	8.5 400 10 90				
	8.6	400	80	20	
	13.5	400	80	20	
Internal Standard	Nicarbazin				

Tab. 2: MRM Details negative mode:

Transition Name	Rel. Sensitivity	Parent Mass	Daughter Mass	DP	CE	СХР	Mode
2.4-D 219/161	1	219	161	-50	-18	-9	ESI neg.
2.4-D 221/163	2	221	163	-50	-18	-9	ESI neg.
2.4-D 219/125	3	219	125	-50	-38	-7	ESI neg.
Dichlorprop 233/161	1	233	161	-50	-18	-9	ESI neg.
Dichlorprop 235/163	2	235	163	-50	-18	-7	ESI neg.
Dichlorprop 233/125	3	233	125	-50	-38	-5	ESI neg.
Fluazifop 326/226	1	326	226	-65	-38	-11	ESI neg.
Fluazifop 326/108	2	326	108	-65	-56	-5	ESI neg.
Fluazifop 326/254	3	326	254	-65	-22	-5	ESI neg.
Haloxyfop 360/288	1	360	288	-70	-20	-15	ESI neg.
Haloxyfop 362/290	2	362	290	-75	-20	-15	ESI neg.
Haloxyfop 360/196	3	360	196	-70	-52	-9	ESI neg.

Tab. 3: MRM Details of Fluazifop and Haloxyfop in the ESI positive mode:

Transition Name	Rel. Sensitivity	Parent Mass	Daughter Mass	DP	CE	СХР	Mode
Fluazifop 328/282	1	328	282	76	27	14	ESI pos.
Fluazifop 328/254	2	328	254	76	37	14	ESI pos.
Fluazifop 328/91	3	328	91	76	43	6	ESI pos.
Haloxyfop 362/316	1	362	316	81	25	18	ESI pos.
Haloxyfop 362/91	2	362	91	81	47	6	ESI pos.
Haloxyfop 364/318	3	364	318	71	27	6	ESI pos.

European Union Reference Laboratory for Residues of Pesticides Pesticides Requiring Single Residue Methods

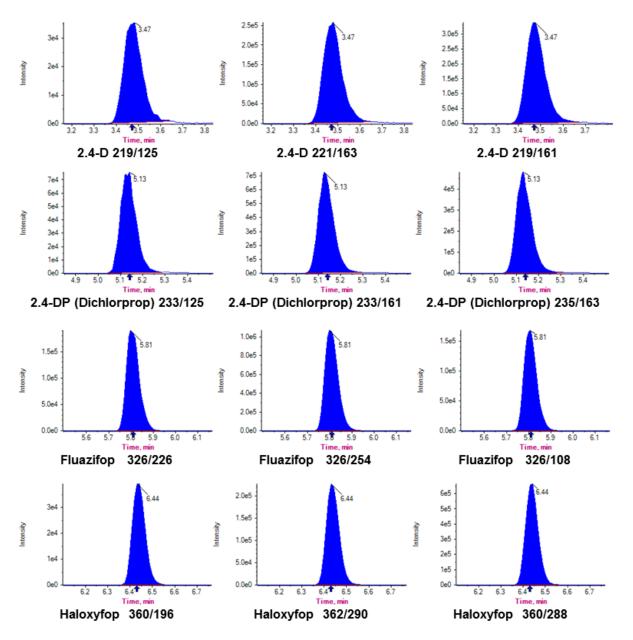


Fig 1: Chromatograms of 2,4-D, Dichlorprop, Fluazifop, Haloxyfop 0.1 µg/mL in Acetonitrile.

Validation data:

Tab. 4: Recovery experiments for acidic pesticides from Whole Milk, cleanup with ODS (n=5)

Spiking Level	2.4-D	Dichlorprop	Fluazifop	Haloxyfop
		Recovery rat	es (RSDs)	
0.1 mg/kg	100.3% (2.5%)	101.5% (2.0%)	104.4 (3.4%)	100.5% (4.9%)
0.02 mg/kg	98.0% (5.2%)	99.4% (5.7%)	102.2% (4.6%)	105.8% (10.7%)

Validation data with modified methods:

Tab. 5: Recovery experiments for acidic pesticides from Whole Milk (n=3), Cleanup: freeze-out -> filtration ->dilution with water (1:1)

Spiking Level	2.4-D	Fluazifop	Haloxyfop	
	Recovery rates (RSDs)			
0.05 mg/kg	108% (2.1%)	108 (1.4%)	111% (3.8%)	

Tab. 6: Recovery experiments for acidic pesticides from Whole Milk (n=5), Cleanup: dilution with water (1:1) + ODS 25mg/mL raw extract

Spiking Level	2.4-D	Fluazifop	Haloxyfop	
	Recovery rates (RSDs)			
0.025 mg/kg	101% (1.5%)	101% (2.6%)	97% (1.0%)	

Impact of cleanup with PSA:

Tab. 7: Recovery experiments for acidic pesticides <u>from QuEChERS raw extracts</u> of Whole Milk applying different cleanup steps

Compound	Mean Recovery of cleanup step in % (spiking on raw extract of whole milk at level corresp. to 0.1 mg/kg) Cleanup: d-SPE with			
	ODS 25 mg/mL (n=2) ODS/PSA 25 mg/mL each (n=2)			
2.4-D	100	47		
2.4-DP (Dichlorprop)	101	51		
Fluazifop	104	50		
Haloxyfop	100	55		

NOTE: Phenoxyalkanoic acids show reduced recoveries when PSA sorbent is used in dSPE cleanup step!!

Impact of cleanup on dry residue of extracts

Cleanup approach	Dry residue %	Notes
None (Raw milk extract)	100%	3,3 mg dry residue/mL (=0,033%), compared to ca. 12% dry residue in whole milk
dSPE w. C18 (25 mg/mL)	64%	w. additional PSA/MgSO4 (25/150 mg/mL) 53%
Freeze-out and decanting though cotton	44%	w. additional PSA/MgSO ₄ (25/150 mg/mL) 35%
1:1 dilution w. water -> filtration	35%	Calculated on basis of non-diluted extract (x2)
1:1 dilution w. water + simultaneous dSPE w. C18 (25 mg/mL) -> filtration	23%	Calculated on basis of non-diluted extract (x2). Substantial recovery losses of QACs observed!!
Freeze-out -> filtration ->dilution with water (1:1) -> filtration	10%	Calculated on basis of non-diluted extract (x2)

Recoveries can also be found at www.eurl-pesticides-datapool.eu

References

- [3] The ePesticide Manual, ISBN 1-901396-31-2, The British Crop Protection Council
- [4] http://www.alanwood.net/pesticides/class_herbicides.html